The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar c...The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.展开更多
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing...Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.展开更多
Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterpri...Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterprises (SMEs) on the economy is significant. Solar cells harness the sun's energy to generate electricity in an environmentally friendly manner. This study compares silicon solar cells to flexible Organic Photovoltaic solar cells (OPV) for electricity energy for a micro-business in the UK and Iraq. It shows that it is feasible to replace existing fossil fuel sources with solar cells in Iraq due to a greater amount of solar radiation striking the earth's surface. Flexible solar cells can replace a proportion of the energy requirements in the UK and a larger proportion in Iraq. Using existing 20% efficient solar cells, 28% and 83% of the energy requirements of the microbusiness can be replaced in UK and Iraq respectively. Assuming 20% efficiency for solar cells placed on windows, 74% and 220% of the energy requirements of UK and Kurdistan can be replaced respectively and the surplus stored.展开更多
Energy security and CO2 reduction are one of the most important issues as well as food matter in the 21st century. Power storage and power generation will contribute to solution of these issues. Electrochemical storag...Energy security and CO2 reduction are one of the most important issues as well as food matter in the 21st century. Power storage and power generation will contribute to solution of these issues. Electrochemical storage of Li-ion batteries is widely applied in mobile applications, and the new application for automobile using has been actively developed and partially realized. And the Li-ion battery storage in smart grid systems is also expected. Automobile use and storage use have large market size same as the size of memory semiconductor. For these diverse applications, material research and development are key technologies. From power generation, Solid Oxide Fuel Cell and Dye Sensitized Solar Cell are much expected as new technology devices. The business model is important to realize these new devices considering the value compared with the existing methods.展开更多
The implementation of climate technologies and their commercialization ultimately depends on the success of their research and development(R&D) projects. In the Republic of Korea(ROK), twenty-seven climate technol...The implementation of climate technologies and their commercialization ultimately depends on the success of their research and development(R&D) projects. In the Republic of Korea(ROK), twenty-seven climate technologies were selected to boost the greening of existing industries and to develop new green industries to promote a sustainable climate technology development strategy. Rechargeable battery technology, carbon capture and storage(CCS) technology, smart grids, and sewage treatment are all research areas expected to have tangible outcomes in the forthcoming years. As such, they were included in a comprehensive R&D plan for climate technology advancement, which places an emphasis on climate technology development and commercialization strategy. In this study, the R&D plan of the ROK is reviewed by examining its six core climate technology programs: solar cells, fuel cells, bioenergy, rechargeable battery technology, information technology(IT) applications for the power sector, and CCS technology in detail. The climate policy in the ROK aims to find new economic growth engines and to develop new business opportunities while actively participating in international efforts to combat climate change.展开更多
Photvoltiacs (PV) power plants have beell built all over the world, and are successfully proven as one of the important substitutes of alternative energy sources. In the Kingdom of Saudi Arabia, the electricity dema...Photvoltiacs (PV) power plants have beell built all over the world, and are successfully proven as one of the important substitutes of alternative energy sources. In the Kingdom of Saudi Arabia, the electricity demand will double in the next 15 years, dramatically increasing fuel consumption. To meet this huge load growth, there has been some series of movements to find out solutions. This research aims at studying the feasibility of design and construction of a solar power plant using photovoltaic cells in Saudi Arabia from the geographic, economic and technical perspectives. It's concluded that PV power is competitive with the conventional capacity required to meet "peak" power demand and represents an opportunity for reducing fuel consumption in Saudi Arabia.展开更多
This review highlights the recent research progress on inorganic solid state energy materials in China,from synthesis and fundamental properties to their applications.It describes the significant contributions of Chin...This review highlights the recent research progress on inorganic solid state energy materials in China,from synthesis and fundamental properties to their applications.It describes the significant contributions of Chinese scholars in the field of inorganic solid state chemistry and energy materials including green catalysts,fuel cells,lithium batteries,solar cells,hydrogen storage materials,thermoelectric materials,luminescent materials and superconductors,and then outlines the ongoing rapid progress of novel inorganic solid state materials and the development of reliable and reproducible preparation methods for inorganic solid state materials in China.Finally,we conclude the paper by considering future developments of inorganic solid state chemistry and energy materials in China.展开更多
The fuel-optimal transfer trajectories using solar electric propulsion are designed considering the power constraints and solar array performance degradation.Three different performance degradation models including li...The fuel-optimal transfer trajectories using solar electric propulsion are designed considering the power constraints and solar array performance degradation.Three different performance degradation models including linear,positive and negative exponential degradations are used in the analysis of three typical rendezvous missions including Apophis,Venus and Ceres,respectively.The optimal control problem is formulated using the calculus of variations and Pontryagin’s maximum principle,which leads to a bang-bang control that is solved by indirect method combined with a homotopic technique.In demonstrating the effects of the power constraints and solar array performance degradation on the power budget and fuel consumption,the time histories of the power profile and the fuel consumptions are compared for the three missions.This study indicates that it is necessary to consider the power constraints and solar array performance degradation for the SEP-based low-thrust trajectory design,espacially for long-duration outbound flights.展开更多
基金The National Natural Science Foundation of China(No.51376110,51541604)the Major International(Regional) Joint Research Project of the National Natural Science Foundation of China(No.61320106011)
文摘The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.
文摘Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.
文摘Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterprises (SMEs) on the economy is significant. Solar cells harness the sun's energy to generate electricity in an environmentally friendly manner. This study compares silicon solar cells to flexible Organic Photovoltaic solar cells (OPV) for electricity energy for a micro-business in the UK and Iraq. It shows that it is feasible to replace existing fossil fuel sources with solar cells in Iraq due to a greater amount of solar radiation striking the earth's surface. Flexible solar cells can replace a proportion of the energy requirements in the UK and a larger proportion in Iraq. Using existing 20% efficient solar cells, 28% and 83% of the energy requirements of the microbusiness can be replaced in UK and Iraq respectively. Assuming 20% efficiency for solar cells placed on windows, 74% and 220% of the energy requirements of UK and Kurdistan can be replaced respectively and the surplus stored.
文摘Energy security and CO2 reduction are one of the most important issues as well as food matter in the 21st century. Power storage and power generation will contribute to solution of these issues. Electrochemical storage of Li-ion batteries is widely applied in mobile applications, and the new application for automobile using has been actively developed and partially realized. And the Li-ion battery storage in smart grid systems is also expected. Automobile use and storage use have large market size same as the size of memory semiconductor. For these diverse applications, material research and development are key technologies. From power generation, Solid Oxide Fuel Cell and Dye Sensitized Solar Cell are much expected as new technology devices. The business model is important to realize these new devices considering the value compared with the existing methods.
基金supported by the research grant from Yonsei University
文摘The implementation of climate technologies and their commercialization ultimately depends on the success of their research and development(R&D) projects. In the Republic of Korea(ROK), twenty-seven climate technologies were selected to boost the greening of existing industries and to develop new green industries to promote a sustainable climate technology development strategy. Rechargeable battery technology, carbon capture and storage(CCS) technology, smart grids, and sewage treatment are all research areas expected to have tangible outcomes in the forthcoming years. As such, they were included in a comprehensive R&D plan for climate technology advancement, which places an emphasis on climate technology development and commercialization strategy. In this study, the R&D plan of the ROK is reviewed by examining its six core climate technology programs: solar cells, fuel cells, bioenergy, rechargeable battery technology, information technology(IT) applications for the power sector, and CCS technology in detail. The climate policy in the ROK aims to find new economic growth engines and to develop new business opportunities while actively participating in international efforts to combat climate change.
文摘Photvoltiacs (PV) power plants have beell built all over the world, and are successfully proven as one of the important substitutes of alternative energy sources. In the Kingdom of Saudi Arabia, the electricity demand will double in the next 15 years, dramatically increasing fuel consumption. To meet this huge load growth, there has been some series of movements to find out solutions. This research aims at studying the feasibility of design and construction of a solar power plant using photovoltaic cells in Saudi Arabia from the geographic, economic and technical perspectives. It's concluded that PV power is competitive with the conventional capacity required to meet "peak" power demand and represents an opportunity for reducing fuel consumption in Saudi Arabia.
基金supported by the National Natural Science Foundation of China (Grant Nos.51272235,51272237,50902123,50972130)Zhejiang Provincial Natural Science Foundation of China (Grant No.LR12E02001)Qianjiang Talent Program of Zhejiang Province (Grant Nos. QJD1102007& QJD1002001)
文摘This review highlights the recent research progress on inorganic solid state energy materials in China,from synthesis and fundamental properties to their applications.It describes the significant contributions of Chinese scholars in the field of inorganic solid state chemistry and energy materials including green catalysts,fuel cells,lithium batteries,solar cells,hydrogen storage materials,thermoelectric materials,luminescent materials and superconductors,and then outlines the ongoing rapid progress of novel inorganic solid state materials and the development of reliable and reproducible preparation methods for inorganic solid state materials in China.Finally,we conclude the paper by considering future developments of inorganic solid state chemistry and energy materials in China.
基金supported by National Basic Research Program of China (Grant No. 2012CB720000)the Fund of Science and Technology on Aerospace Flight Dynamic Laboratory (Grant No. 2012AFDL006)
文摘The fuel-optimal transfer trajectories using solar electric propulsion are designed considering the power constraints and solar array performance degradation.Three different performance degradation models including linear,positive and negative exponential degradations are used in the analysis of three typical rendezvous missions including Apophis,Venus and Ceres,respectively.The optimal control problem is formulated using the calculus of variations and Pontryagin’s maximum principle,which leads to a bang-bang control that is solved by indirect method combined with a homotopic technique.In demonstrating the effects of the power constraints and solar array performance degradation on the power budget and fuel consumption,the time histories of the power profile and the fuel consumptions are compared for the three missions.This study indicates that it is necessary to consider the power constraints and solar array performance degradation for the SEP-based low-thrust trajectory design,espacially for long-duration outbound flights.