The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transfor...The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transform infrared(FTIR)spectroscopy,scanning electron microscope(SEM),respectively.Moreover,the conductivity and the voltage-current curves of the electrolytes are measured by electrochemical workstation.The higher porosity and electrolyte uptake are observed in the membranes prepared at lower crosslinker concentration.The suitable cross-linking acrylate monomer improves the porosity and the electrochemical behavior of GPE.A dye-sensitized solar cell(DSSC)employing PGE based on PVDF/poly(ethylene glycol dimethacrylate)(PEGDMA)IPN yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 mA·cm-2and the conversion efficiency of 2.710% under 100 mW·cm-2illumination.展开更多
Mesoscopic lead halide perovskite solar cells typically use TiO2 nanoparticle films as the scaffolds for electron-transport pathway and perovskite deposition. Here, we demonstrate that swelling-induced mesoporous bloc...Mesoscopic lead halide perovskite solar cells typically use TiO2 nanoparticle films as the scaffolds for electron-transport pathway and perovskite deposition. Here, we demonstrate that swelling-induced mesoporous block copolymers can be templates for producing three- dimensional TiO2 networks by combining the atomic layer deposition technique. Thickness adjustable TiO2 network is an excellent alternative scaffold material for efficient per- ovskite solar cells. Our best performing cells using such a 270 nm thick template have achieved a high efficiency of 12.5 % with pristine poly-3-hexylthiophene as a hole transport material. The high performance is attributed to the direct transport pathway and high absorption of scaf- folds, small leakage current and largely reduced recombi- nation rate at interfaces. The results show that TiO2 network architecture is a promising scaffold for meso- scopic perovskite solar cells.展开更多
Although solar radiation is a crucial parameter in designing solar power devices and studying land surface processes,long-term and densely distributed observations of surface solar radiation are usually not available....Although solar radiation is a crucial parameter in designing solar power devices and studying land surface processes,long-term and densely distributed observations of surface solar radiation are usually not available.This paper describes the development of a 50-year dataset of daily surface solar radiation at 716 China Meteorological Administration(CMA) stations.First,a physical model,without any local calibration,is applied to estimate the daily radiation at all 716 CMA routine stations.Then,an ANN-based(Artificial Neural Network) model is applied to extend radiation estimates to earlier periods at each of all 96 CMA radiation stations.The ANN-based model is trained with recent reliable radiation data and thus its estimate is more reliable than the physical model.Therefore,the ANN-based model is used to correct the physical model dynamically at a monthly scale.The correction generally improves the accuracy of the radiation dataset estimated by the physical model:the mean bias error(MBE) averaged over all the 96 radiation stations during 1994-2002 is reduced from 0.68 to 0.11 MJ m-2 and the root mean square error(RMSE) from 2.01 to 1.80 MJ m-2.The new radiation dataset shows superior performance over previous estimates by locally calibrated ngstr m-Prescott models.Based on the new radiation dataset,the annual mean daily solar radiation over China is 14.3 MJ m-2.The maximal seasonal mean daily solar radiation occurs in the Tibetan Plateau during summer with a value of 27.1 MJ m-2,whereas the minimal seasonal mean daily solar radiation occurs in the Sichuan Basin during winter with a value of 4.7 MJ m-2.展开更多
文摘The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transform infrared(FTIR)spectroscopy,scanning electron microscope(SEM),respectively.Moreover,the conductivity and the voltage-current curves of the electrolytes are measured by electrochemical workstation.The higher porosity and electrolyte uptake are observed in the membranes prepared at lower crosslinker concentration.The suitable cross-linking acrylate monomer improves the porosity and the electrochemical behavior of GPE.A dye-sensitized solar cell(DSSC)employing PGE based on PVDF/poly(ethylene glycol dimethacrylate)(PEGDMA)IPN yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 mA·cm-2and the conversion efficiency of 2.710% under 100 mW·cm-2illumination.
文摘Mesoscopic lead halide perovskite solar cells typically use TiO2 nanoparticle films as the scaffolds for electron-transport pathway and perovskite deposition. Here, we demonstrate that swelling-induced mesoporous block copolymers can be templates for producing three- dimensional TiO2 networks by combining the atomic layer deposition technique. Thickness adjustable TiO2 network is an excellent alternative scaffold material for efficient per- ovskite solar cells. Our best performing cells using such a 270 nm thick template have achieved a high efficiency of 12.5 % with pristine poly-3-hexylthiophene as a hole transport material. The high performance is attributed to the direct transport pathway and high absorption of scaf- folds, small leakage current and largely reduced recombi- nation rate at interfaces. The results show that TiO2 network architecture is a promising scaffold for meso- scopic perovskite solar cells.
基金supported by the Global Change Program of Ministry of Science and Technology of China(Grant No.2010CB951703)China's "863"Project(Grant No.2009AA122100)the "100-Talent" Program of Chinese Academy of Sciences
文摘Although solar radiation is a crucial parameter in designing solar power devices and studying land surface processes,long-term and densely distributed observations of surface solar radiation are usually not available.This paper describes the development of a 50-year dataset of daily surface solar radiation at 716 China Meteorological Administration(CMA) stations.First,a physical model,without any local calibration,is applied to estimate the daily radiation at all 716 CMA routine stations.Then,an ANN-based(Artificial Neural Network) model is applied to extend radiation estimates to earlier periods at each of all 96 CMA radiation stations.The ANN-based model is trained with recent reliable radiation data and thus its estimate is more reliable than the physical model.Therefore,the ANN-based model is used to correct the physical model dynamically at a monthly scale.The correction generally improves the accuracy of the radiation dataset estimated by the physical model:the mean bias error(MBE) averaged over all the 96 radiation stations during 1994-2002 is reduced from 0.68 to 0.11 MJ m-2 and the root mean square error(RMSE) from 2.01 to 1.80 MJ m-2.The new radiation dataset shows superior performance over previous estimates by locally calibrated ngstr m-Prescott models.Based on the new radiation dataset,the annual mean daily solar radiation over China is 14.3 MJ m-2.The maximal seasonal mean daily solar radiation occurs in the Tibetan Plateau during summer with a value of 27.1 MJ m-2,whereas the minimal seasonal mean daily solar radiation occurs in the Sichuan Basin during winter with a value of 4.7 MJ m-2.