In standard P-V systems, the high cost and low quantum efficiency of silicon cells has held back widespread adoption of this technology for decades. To generate electrical power from solar energy in a cost effective w...In standard P-V systems, the high cost and low quantum efficiency of silicon cells has held back widespread adoption of this technology for decades. To generate electrical power from solar energy in a cost effective way, most methods require the concentration of the sunlight in order to increase the efficiency of energy conversion. Most systems use parabolic mirrors to focus sunlight to either a line (trough systems) or a small volume (dishes). One of the reasons solar power still remains little utilised, is the high cost of the collection systems.Light focussing devices using reflection usually take the form of a curved mirror. In contrast, this paper describes the new design of a device consisting of an array of small angled reflecting mirror facets located in a planar form. The three dimensional angle of each facet in the array is a function of its position in the array, and is calculated to be such that for a parallel beam striking the array, each facet will reflect the light in such a way as to form a focal point region.展开更多
In this paper, detailed optical of the solar parabolic dish concentrator is presented. The system has diameter D = 2,800 mm and focal length f = 1,400 mm. The efficient conversion of solar radiation in heat at these t...In this paper, detailed optical of the solar parabolic dish concentrator is presented. The system has diameter D = 2,800 mm and focal length f = 1,400 mm. The efficient conversion of solar radiation in heat at these temperature levels requires a use of concentrating solar collectors. In this paper, detailed optical design of the solar parabolic dish concentrator is presented. The parabolic dish of the solar system consists from 12 curvilinear trapezoidal reflective petals. This paper presents optical simulations of the parabolic solar concentrator unit using the ray-tracing software TracePro. The total flux on receiver and the distribution of irradiance for absorbed flux on center and periphery receiver are given. The total flux at the focal region is 4,031.3 W. The goal of this paper is to present optical design of a low-tech solar concentrator, that can be used as a potentially low-cost tool for laboratory-scale research on the medium-temperature thermal processes, cooling, industrial processes, solar cooking and polygeneration systems, etc.展开更多
A new trough imaging solar collector with multiple compounding curved surfaces has been designed. Its working principle and design parameters have been introduced. The experimental curve of temperature rising of the s...A new trough imaging solar collector with multiple compounding curved surfaces has been designed. Its working principle and design parameters have been introduced. The experimental curve of temperature rising of the system with time under the real weather has been given. The system efficiency and the relation between efficiency and temperature have been calculated. The test result shows that the system has the advantages of high collecting temperature and not obvious variety of the collecting efficiency with the operating temperature. Therefore, this collector is a quite ideal medium temperature solar collector.展开更多
A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with...A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are 3.50% and 1.21% for PSCs with and without the ZnO thin film, respectively. Light intensity dependence of the photocurrent and the capacitance-voltage measurement demonstrate that the increased PCEs are due to the restriction of the strong bimolecular recombination in the interface when a thin ZnO layer is inserted between the polymer active layer and the ITO electrode. These results demonstrate that the ZnO thin film plays an important role in the performance of PSCs with an inverted device structure.展开更多
Temperature-dependent aggregation is a key property for some donor polymers to realize favorable bulk-heterojunction(BHJ)morphologies and high-efficiency(>10%) polymer solar cells.Previous studies find that an impo...Temperature-dependent aggregation is a key property for some donor polymers to realize favorable bulk-heterojunction(BHJ)morphologies and high-efficiency(>10%) polymer solar cells.Previous studies find that an important structural feature that enables such temperature-dependent aggregation property is the 2nd position branched alkyl chains sitting between two thiophene units.In this report,we demonstrate that an optimal extent of fluorination on the polymer backbone is a second essential structural feature that enables the strong temperature-dependent aggregation property.We compare the properties of three structurally similar polymers with 0,2 or 4 fluorine substitutions in each repeating unit through an in-depth morphological study.We show that the non-fluorinated polymer does not aggregate in solution(0.02 mg mL^(-1) in chlorobenzene) at room temperature,which results in poor polymer crystallinity and extremely large polymer domains.On the other hand,the polymer with four fluorine atoms in each repeating unit exhibits an excessively strong tendency to aggregate,which makes it difficult to process and causes a large domain.Only the polymer with two fluorine atoms in each repeating unit exhibits a suitable extent of temperature-dependent aggregation property.As a result,its blend film achieves a favorable morphology and high power conversion efficiency.This provides another key design rationale for developing donor polymers with suitable temperature-dependent aggregation properties and thus high performance.展开更多
文摘In standard P-V systems, the high cost and low quantum efficiency of silicon cells has held back widespread adoption of this technology for decades. To generate electrical power from solar energy in a cost effective way, most methods require the concentration of the sunlight in order to increase the efficiency of energy conversion. Most systems use parabolic mirrors to focus sunlight to either a line (trough systems) or a small volume (dishes). One of the reasons solar power still remains little utilised, is the high cost of the collection systems.Light focussing devices using reflection usually take the form of a curved mirror. In contrast, this paper describes the new design of a device consisting of an array of small angled reflecting mirror facets located in a planar form. The three dimensional angle of each facet in the array is a function of its position in the array, and is calculated to be such that for a parallel beam striking the array, each facet will reflect the light in such a way as to form a focal point region.
文摘In this paper, detailed optical of the solar parabolic dish concentrator is presented. The system has diameter D = 2,800 mm and focal length f = 1,400 mm. The efficient conversion of solar radiation in heat at these temperature levels requires a use of concentrating solar collectors. In this paper, detailed optical design of the solar parabolic dish concentrator is presented. The parabolic dish of the solar system consists from 12 curvilinear trapezoidal reflective petals. This paper presents optical simulations of the parabolic solar concentrator unit using the ray-tracing software TracePro. The total flux on receiver and the distribution of irradiance for absorbed flux on center and periphery receiver are given. The total flux at the focal region is 4,031.3 W. The goal of this paper is to present optical design of a low-tech solar concentrator, that can be used as a potentially low-cost tool for laboratory-scale research on the medium-temperature thermal processes, cooling, industrial processes, solar cooking and polygeneration systems, etc.
基金Acknowledgments This work is supported by the National Natural Science Foundation of China (No.50576004) and National "863" Hi-Tech Development Program of China (No.2007AA05Z433).
文摘A new trough imaging solar collector with multiple compounding curved surfaces has been designed. Its working principle and design parameters have been introduced. The experimental curve of temperature rising of the system with time under the real weather has been given. The system efficiency and the relation between efficiency and temperature have been calculated. The test result shows that the system has the advantages of high collecting temperature and not obvious variety of the collecting efficiency with the operating temperature. Therefore, this collector is a quite ideal medium temperature solar collector.
基金the Joint Researh Fund for Overseas Chinese Scholars, and the National Natural Science Foundation of China (50828301)the NSFC (50990065, U0634003, and 60937001)+1 种基金MOST (2009CB603601)973 project (2009CB623604)
文摘A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are 3.50% and 1.21% for PSCs with and without the ZnO thin film, respectively. Light intensity dependence of the photocurrent and the capacitance-voltage measurement demonstrate that the increased PCEs are due to the restriction of the strong bimolecular recombination in the interface when a thin ZnO layer is inserted between the polymer active layer and the ITO electrode. These results demonstrate that the ZnO thin film plays an important role in the performance of PSCs with an inverted device structure.
基金supported by the National Basic Research Program of China(2013CB834705)HK JEBN Limited(Hong Kong)+3 种基金the Hong Kong Research Grants Council(T23-407/13-N,N_HKUST623/13,606012)HKUST President's Office through SSTSP scheme(EP201)the National Natural Science Foundation of China(21374090,21504066,21534003,51320105014)supported by the Director,Office of Science,Office of Basic Energy Sciences,of the US Department of Energy under Contract No.DE-AC02-05CH11231
文摘Temperature-dependent aggregation is a key property for some donor polymers to realize favorable bulk-heterojunction(BHJ)morphologies and high-efficiency(>10%) polymer solar cells.Previous studies find that an important structural feature that enables such temperature-dependent aggregation property is the 2nd position branched alkyl chains sitting between two thiophene units.In this report,we demonstrate that an optimal extent of fluorination on the polymer backbone is a second essential structural feature that enables the strong temperature-dependent aggregation property.We compare the properties of three structurally similar polymers with 0,2 or 4 fluorine substitutions in each repeating unit through an in-depth morphological study.We show that the non-fluorinated polymer does not aggregate in solution(0.02 mg mL^(-1) in chlorobenzene) at room temperature,which results in poor polymer crystallinity and extremely large polymer domains.On the other hand,the polymer with four fluorine atoms in each repeating unit exhibits an excessively strong tendency to aggregate,which makes it difficult to process and causes a large domain.Only the polymer with two fluorine atoms in each repeating unit exhibits a suitable extent of temperature-dependent aggregation property.As a result,its blend film achieves a favorable morphology and high power conversion efficiency.This provides another key design rationale for developing donor polymers with suitable temperature-dependent aggregation properties and thus high performance.