期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
硅太阳能电池及其在太阳能焊接工程车的应用 被引量:5
1
作者 王元良 孟伟 +2 位作者 肖长源 李达 曾明华 《现代焊接》 2015年第3期1-6,共6页
本文综述了太阳能的利用方式和太阳能焊接工程车中所用的太阳能电池材料及太阳能电池,硅材料的基本性质,晶体硅太阳能器件的制造及特性,硅太阳能电池器件的选用及其车身一体化的安装。
关键词 太阳能焊接工程车 太阳能电池 太阳能能量转换 硅材料
下载PDF
Copper‐doped zinc sulfide nanoframes with three‐dimensional photocatalytic surfaces for enhanced solar driven H_(2) production 被引量:2
2
作者 Junmin Huang Jianmin Chen +3 位作者 Wangxi Liu Jingwen Zhang Junying Chen Yingwei Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期782-792,共11页
Solar‐to‐chemical energy conversion is perceived as one of the most potential solutions to the current energy and environmental crisis,yet requires major scientific endeavors on the development of efficient and sust... Solar‐to‐chemical energy conversion is perceived as one of the most potential solutions to the current energy and environmental crisis,yet requires major scientific endeavors on the development of efficient and sustainable photocatalysts.Remolding the composition and morphology of a semiconductor jointly for the purpose of improving photocatalysis efficiency remains challenging.Herein,we rationally fabricated Cu‐doped ZnS nanoframes via a simple conjunct strategy of substitutional doping,chemical acidic etching,and sulfidation,aiming at enhancing the light utilization and charge separation/transfer efficiency for solar‐light‐driven hydrogen generation.Cu‐doped zeolitic imidazolate framework‐8(ZIF‐8)rhombic dodecahedrons are transformed to hollow Cu‐ZIF‐8 nanoframes converted to Cu‐ZnS nanoframes with three‐dimensional photocatalytic active surfaces via anisotropic chemical etching,which is further converted to Cu‐ZnS nanoframes.By combining the merits of optimal heteroatom doping and frame‐like open architecture,the obtained 1%Cu‐doped ZnS nanoframe exhibits high photocatalytic activity under solar light irradiation with improved hydrogen production rate up to 8.30 mmol h^(–1) g^(–1) and excellent stability in the absence of cocatalysts,which is significantly improved in comparison with those of the bare ZnS and Cu‐ZnS with different morphologies.This work inspired by merging the merits of metal doping and anisotropic chemical etching may shed light on the rational design and fabrication of advanced photocatalysts. 展开更多
关键词 Metal‐organic frameworks Solar‐to‐chemical energy conversion Metal sulfides Hydrogen production PHOTOCATALYSIS
下载PDF
Building Model of Photovoltaic Cell Module with MATLAB Simulink
3
作者 Lotfi Rachedi Cherif Fatha Tahar Bahi 《Journal of Energy and Power Engineering》 2013年第11期2188-2192,共5页
In this paper, a PV (photovoltaic) module in renewable energy conversion system is simulated. The simulation of the system is developed using MATLAB/Simulink environments, which can be representative of PV cell, mod... In this paper, a PV (photovoltaic) module in renewable energy conversion system is simulated. The simulation of the system is developed using MATLAB/Simulink environments, which can be representative of PV cell, module and array for easy use on simulation block. The PV model is developed using basic circuit equations of the photovoltaic solar cells including the effects of irradiation and temperature. The output current and power characteristics of PV model are simulated. The results are provided and presented here. 展开更多
关键词 Photovoltaic model DEVELOPED simulation MATLAB.
下载PDF
3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells 被引量:7
4
作者 Fei Pan Song Bai +5 位作者 Xian Wei Yingfen Li Dianyong Tang Xiwen Chen Menglan Lv Yongfang Li 《Science China Materials》 SCIE EI CSCD 2021年第2期277-287,共11页
Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,... Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,11,13,15-octa-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-vinylpentacyclo-octasiloxane)(POSSFN)and(1,3,5,7-tetra-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-adamantane)(ADMAFN)are excellent surfactants for dispersing graphene in ethanol at the concentration of 0.97–1.18 mg mL−1,in agreement with their calculated large adsorption energies on graphene.The results of electron spin resonance,Raman,scanning Kelvin probe microscopy and X-ray photoelectron spectroscopy measurements indicate that the amino groups could n-dope graphene or form dipole interaction with graphene.The two 3D-surfactant-based graphene composites(POSSFN-G and ADMAFN-G)can work as high-performance CIMs in organic solar cells(OSCs),which improve the power conversion efficiency(PCE)of the OSCs based on PM6:Y6 to 15.9%–16.1%.ADMAFN forms dipole interaction with graphene in ADMAFN-G and the composite CIM delivers high PCE of 16.11%in the OSCs,while POSSFN forms n-doped composition with graphene in POSSFN-G which works well as thicker CIM film in the OSCs. 展开更多
关键词 organic solar cells INTERFACES 3D cathode interfacial materials graphene composites
原文传递
15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution 被引量:5
5
作者 Jinzhao Qin Cunbin An +13 位作者 Jianqi Zhang Kangqiao Ma Yang Yang Tao Zhang Sunsun Li Kaihu Xian Yong Cui Yabing Tang Wei Ma Huifeng Yao Shaoqing Zhang Bowei Xu Chang He Jianhui Hou 《Science China Materials》 SCIE EI CSCD 2020年第7期1142-1150,共9页
Synergistic optimization of donor-acceptor blend morphologyis a hurdle in the path of realizing efficient non-fullerene small-molecule organic solar cells(NFSMOSCs)due to the anisotropic conjugated backbones of both d... Synergistic optimization of donor-acceptor blend morphologyis a hurdle in the path of realizing efficient non-fullerene small-molecule organic solar cells(NFSMOSCs)due to the anisotropic conjugated backbones of both donor and acceptor.Therefore,developing a facile molecular design strategy to effectively regulate the crystalline properties of photoactive materials,and thus,enable the optimization of blend morphology is of vital importance.In this study,a new donor molecule B1,comprising phenyl-substituted benzodithiophene(BDT)central unit,exhibits strong interaction with the non-fullerene acceptor BO-4 Cl in comparison with its corresponding thiophene-substituted BDT-based material,BTR.As a result,the B1 is affected and induced from an edgeon to a face-on orientation by the acceptor,while the BTR and the acceptor behave individually for the similar molecular orientation in pristine and blend films according to grazing incidence wide angle X-ray scattering results.It means the donor-acceptor blend morphology is synergistically optimized in the B1 system,and the B1:BO-4 Cl-based devices achieve an outstanding power conversion efficiency(PCE)of 15.3%,further certified to be 15.1%by the National Institute of Metrology,China.Our results demonstrate a simple and effective strategy to improve the crystalline properties of the donor molecule as well as synergistically optimize the morphology of the all-small-molecule system,leading to the high-performance NFSM-OSCs. 展开更多
关键词 organic solar cells all-small-molecule non-fullerene CRYSTALLINITY intermolecular interaction
原文传递
Effect of concomitant anti-solvent engineering on perovskite grain growth and its high efficiency solar cells 被引量:2
6
作者 Tong Liu Xiaofei Dong +3 位作者 Juncong Li Hongli Liu Shirong Wang Xianggao Li 《Science China Materials》 SCIE EI CSCD 2021年第2期267-276,共10页
The grain boundaries and interface properties in the active layers of perovskite solar cells(PSCs)are important factors affecting the performances of the devices.In this work,a simple and fast concomitant annealing pr... The grain boundaries and interface properties in the active layers of perovskite solar cells(PSCs)are important factors affecting the performances of the devices.In this work,a simple and fast concomitant annealing process is established by inducing the secondary growth of the grains using the anti-solvent o-dichlorobenzene(o-PhCl2)or chlorobenzene(PhCl)to suppress the volatilization of solvent molecules during the FA0.80MA0.15Cs0.05Pb(I0.85Br0.15)3(FA,CH5N2+,formamidine;MA,CH3NH3+,methylamine)film annealing procedure.The effects of anti-solvent molecules on the phase transformation,grain boundary fusion and morphology evolution of perovskite films are systematically investigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results indicate that anti-solvent molecules can inhibit solvent evaporation in the active layers and promote crystallite dissolution and ordered secondary growth along the surfaces of large grains.That can promote the formation of large grains and the passivation of surface defects,and can be favorable for the separation and transportation of photocarriers in the active layer.Consequently,the power conversion efficiency(PCE)of PSCs can be effectively improved,with a PCE of 20.72%being achieved by a secondary growth perovskite film optimized with o-PhCl2.Moreover,the efficiency remains at 85%of its initial value after 2400 h of treatment in a natural indoor environment with a relative humidity of 45±5%. 展开更多
关键词 anti-solvent vapor annealing perovskite grains secondary growth defect passivation solar cells
原文传递
Thiamine additive engineering enables improved film formation towards high efficiency and moisture stability in perovskite solar cells
7
作者 Peng Zhang Fengren Cao +1 位作者 Wei Tian Liang Li 《Science China Materials》 SCIE EI CAS CSCD 2022年第2期321-327,共7页
Perovskite solar cells(PSCs)attract widespread research interest due to their exceptional properties.However,the instability of the perovskite layer,especially the moisture instability,and existing defects seriously r... Perovskite solar cells(PSCs)attract widespread research interest due to their exceptional properties.However,the instability of the perovskite layer,especially the moisture instability,and existing defects seriously restrict the performance and limit the development of PSCs towards commercialization.Herein,we fabricate moisture-stable and efficient PSCs by incorporating a thiamine(THM)additive into a lead iodide(PbI_(2))precursor using a two-step spin-coating method.This strategy enables a better interaction between the THM additive and PbI_(2).Then,a higher energy barrier is produced when the material reacts with A-site cations to form perovskite crystals,resulting in larger grains and better-quality perovskite films.Through optimization of the concentration of the THM additive,the optimal perovskite achieves improved moisture stability and decreased trap states;thus,the corresponding unencapsulated devices achieve a remarkable power conversion efficiency(PCE)of 21.40%and maintain>92%of their initial PCE after 180 h in ambient air(~50%humidity).The excellent performance is mainly attributed to the fact that THM promotes crystal growth and passivates defects in perovskite films. 展开更多
关键词 PEROVSKITE moisture stability solar cell PASSIVATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部