In this article,the effect of using water/zinc oxide nanofluid as a working fluid on the performance of solar collector is investigated experimentally.The volumetric concentration of nanoparticles is 0.4%,and the part...In this article,the effect of using water/zinc oxide nanofluid as a working fluid on the performance of solar collector is investigated experimentally.The volumetric concentration of nanoparticles is 0.4%,and the particle size is 40 nm,and the mass flow rate of the fluid varies from 1 to 3 kg/min.For this experiment,a device has been prepared with appropriate measuring instruments whose energy source is solar radiation.The solar energy absorbed by the flat plate collector is absorbed by the nanofluid of water/zinc oxide.The nanofluid is pumped to the consumer,a heat exchanger,where it heats the water.The temperature,radiation level,flow rate,and pressure in different parts of the device were measured.The pressure drop and the heat transferred are the most important results of this experimental work.The ASHRAE standard is used to calculate efficiency.The results showed that the use of water/zinc oxide nanofluid increases the collector performance compared to water.For 1 kg/min of mass flow rate,the nanofluids have a 16% increase in efficiency compared to water.From the results,it can be concluded that the choice of optimum mass flow rate in both water and nanofluid cases increases efficiency.展开更多
Availability of clean water is going to become one of biggest demands of the country. Even though there arc various technologies available for purification of water harnessing solar energy fits the purpose for future ...Availability of clean water is going to become one of biggest demands of the country. Even though there arc various technologies available for purification of water harnessing solar energy fits the purpose for future problems. Distillation is one of many processes available for water purification, and solar energy is one of several forms of heat energy that can be used to energize this process. In this review a study is made to enhance the productivity of the solar stills by connecting solar still with latent heat storage and solar air heater in series and other factors like improving evaporation rate by maintaining Low depth, more exposure area, heat addition by solar collector and presence of latent heat storage material, which is a paraffin wax as a integral part of still. Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. Further augmentation of the yield by scraps, pebble, and sand are added.展开更多
Regarding sun's potential in Middle East and North Africa zone and particularly in Morocco, we focus our work on the development of the knowledge and information concerning the solar heaters for domestic applications...Regarding sun's potential in Middle East and North Africa zone and particularly in Morocco, we focus our work on the development of the knowledge and information concerning the solar heaters for domestic applications, in order to help the industrial and the consumer to select an adaptive technology. As a result, a Moroccan mapping of solar water heating systems is presented in this work. This mapping concerns two technologies commonly used: the FPC (flat plate collectors) and the ETC (evacuated tubes ones). It is based on three criteria: firstly, the efficiency of the STC (solar thermal collectors); secondly, the economic aspect and at last, the reliability requirements. Based on these information, the multi-criteria outranking methodology PROMETHEE (preference ranking organization method for the enrichment evaluations) allows us to define an adequate solar heater technology linked with the climatic zoning of Morocco.展开更多
文摘In this article,the effect of using water/zinc oxide nanofluid as a working fluid on the performance of solar collector is investigated experimentally.The volumetric concentration of nanoparticles is 0.4%,and the particle size is 40 nm,and the mass flow rate of the fluid varies from 1 to 3 kg/min.For this experiment,a device has been prepared with appropriate measuring instruments whose energy source is solar radiation.The solar energy absorbed by the flat plate collector is absorbed by the nanofluid of water/zinc oxide.The nanofluid is pumped to the consumer,a heat exchanger,where it heats the water.The temperature,radiation level,flow rate,and pressure in different parts of the device were measured.The pressure drop and the heat transferred are the most important results of this experimental work.The ASHRAE standard is used to calculate efficiency.The results showed that the use of water/zinc oxide nanofluid increases the collector performance compared to water.For 1 kg/min of mass flow rate,the nanofluids have a 16% increase in efficiency compared to water.From the results,it can be concluded that the choice of optimum mass flow rate in both water and nanofluid cases increases efficiency.
文摘Availability of clean water is going to become one of biggest demands of the country. Even though there arc various technologies available for purification of water harnessing solar energy fits the purpose for future problems. Distillation is one of many processes available for water purification, and solar energy is one of several forms of heat energy that can be used to energize this process. In this review a study is made to enhance the productivity of the solar stills by connecting solar still with latent heat storage and solar air heater in series and other factors like improving evaporation rate by maintaining Low depth, more exposure area, heat addition by solar collector and presence of latent heat storage material, which is a paraffin wax as a integral part of still. Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. Further augmentation of the yield by scraps, pebble, and sand are added.
文摘Regarding sun's potential in Middle East and North Africa zone and particularly in Morocco, we focus our work on the development of the knowledge and information concerning the solar heaters for domestic applications, in order to help the industrial and the consumer to select an adaptive technology. As a result, a Moroccan mapping of solar water heating systems is presented in this work. This mapping concerns two technologies commonly used: the FPC (flat plate collectors) and the ETC (evacuated tubes ones). It is based on three criteria: firstly, the efficiency of the STC (solar thermal collectors); secondly, the economic aspect and at last, the reliability requirements. Based on these information, the multi-criteria outranking methodology PROMETHEE (preference ranking organization method for the enrichment evaluations) allows us to define an adequate solar heater technology linked with the climatic zoning of Morocco.