磁层中的超低频波动(Ultra Low Frequency Wave,简称ULF波)通常被认为是由外界太阳风/行星际磁场扰动或者磁层内部的等离子体不稳定性激发的.当太阳风动压脉冲作用于磁层顶时,可能在磁层内部激发ULF波,从而将太阳风能量输运到地球磁层中...磁层中的超低频波动(Ultra Low Frequency Wave,简称ULF波)通常被认为是由外界太阳风/行星际磁场扰动或者磁层内部的等离子体不稳定性激发的.当太阳风动压脉冲作用于磁层顶时,可能在磁层内部激发ULF波,从而将太阳风能量输运到地球磁层中.本文利用磁流体力学(MHD)数值模拟研究不同形式的太阳风动压脉冲作用下,在磁层中激发的ULF波的性质.我们主要关注地球磁层对太阳风动压正/负脉冲以及太阳风动压正-负脉冲对的响应.模拟结果表明,幅度和周期均相同的太阳风动压正脉冲和负脉冲,在磁层中所激发的ULF波幅度,周期均相同,然而相位相差180°.另外,对一个太阳风动压正-负脉冲对作用于偶极磁层的情况,在地球磁层内的某些特定区域仍可观察到磁力线共振(FLRs)现象,磁力线共振的区域分布和动压脉冲的周期以及动压脉冲对之间的时间间隔有关.同时模拟计算结果还表明,与单一脉冲相比较而言,在动压脉冲对的作用下,太阳风能量可以传递到地球磁层中更低纬度的区域.因此本文结果可以帮助我们更好地理解太阳风能量通过ULF波形式输运到地球磁层的机制;同时,还可以为研究有关内磁层中能量粒子对不同的行星际激波的响应方式提供线索.展开更多
On 24 August 2005, an impulse of solar wind dynamic pressure(Psw) hit the magnetosphere. Using the high resolution geomagnetic field data from 15 ground stations and the data from Geotail and TC-1, we studied the geom...On 24 August 2005, an impulse of solar wind dynamic pressure(Psw) hit the magnetosphere. Using the high resolution geomagnetic field data from 15 ground stations and the data from Geotail and TC-1, we studied the geomagnetic pulsations at auroral latitudes driven by the sharp decrease of Psw at the trailing edge of the impulse. The results show that the sharp decrease of Psw can excite a global pulsation in the frequency range 4.3–11.6 m Hz. The pulsation has a reversal of polarization between two auroral latitude stations, a larger power spectral density(PSD) close to resonant latitude and increasing frequency with decreasing latitude. All these features indicate that the pulsations are associated with field line resonance(FLR). The fundamental resonant frequency(the peak frequency of PSD between 4.3 and 5.8 m Hz) is dependent on magnetic local time and is largest around magnetic local noon. This feature is due to the fact that the size of magnetospheric cavity is dependent on local time and smallest at noon. A second harmonic wave at about 10 m Hz is also observed, which is strongest in the daytime sector, and becomes heavily attenuated in the night sector. The comparison of the PSDs of the pulsations driven by sharp increase and sharp decrease of Psw shows that the frequency of pulsations is negatively proportional to the size of magnetopause. Since the FLR is excited by compressional cavity/waveguide waves, the above results indicate that the resonant frequency in the magnetospheric cavity/waveguide is controlled not only by solar wind parameters but also by magnetic local time of observation point.展开更多
文摘磁层中的超低频波动(Ultra Low Frequency Wave,简称ULF波)通常被认为是由外界太阳风/行星际磁场扰动或者磁层内部的等离子体不稳定性激发的.当太阳风动压脉冲作用于磁层顶时,可能在磁层内部激发ULF波,从而将太阳风能量输运到地球磁层中.本文利用磁流体力学(MHD)数值模拟研究不同形式的太阳风动压脉冲作用下,在磁层中激发的ULF波的性质.我们主要关注地球磁层对太阳风动压正/负脉冲以及太阳风动压正-负脉冲对的响应.模拟结果表明,幅度和周期均相同的太阳风动压正脉冲和负脉冲,在磁层中所激发的ULF波幅度,周期均相同,然而相位相差180°.另外,对一个太阳风动压正-负脉冲对作用于偶极磁层的情况,在地球磁层内的某些特定区域仍可观察到磁力线共振(FLRs)现象,磁力线共振的区域分布和动压脉冲的周期以及动压脉冲对之间的时间间隔有关.同时模拟计算结果还表明,与单一脉冲相比较而言,在动压脉冲对的作用下,太阳风能量可以传递到地球磁层中更低纬度的区域.因此本文结果可以帮助我们更好地理解太阳风能量通过ULF波形式输运到地球磁层的机制;同时,还可以为研究有关内磁层中能量粒子对不同的行星际激波的响应方式提供线索.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NS2015089)
文摘On 24 August 2005, an impulse of solar wind dynamic pressure(Psw) hit the magnetosphere. Using the high resolution geomagnetic field data from 15 ground stations and the data from Geotail and TC-1, we studied the geomagnetic pulsations at auroral latitudes driven by the sharp decrease of Psw at the trailing edge of the impulse. The results show that the sharp decrease of Psw can excite a global pulsation in the frequency range 4.3–11.6 m Hz. The pulsation has a reversal of polarization between two auroral latitude stations, a larger power spectral density(PSD) close to resonant latitude and increasing frequency with decreasing latitude. All these features indicate that the pulsations are associated with field line resonance(FLR). The fundamental resonant frequency(the peak frequency of PSD between 4.3 and 5.8 m Hz) is dependent on magnetic local time and is largest around magnetic local noon. This feature is due to the fact that the size of magnetospheric cavity is dependent on local time and smallest at noon. A second harmonic wave at about 10 m Hz is also observed, which is strongest in the daytime sector, and becomes heavily attenuated in the night sector. The comparison of the PSDs of the pulsations driven by sharp increase and sharp decrease of Psw shows that the frequency of pulsations is negatively proportional to the size of magnetopause. Since the FLR is excited by compressional cavity/waveguide waves, the above results indicate that the resonant frequency in the magnetospheric cavity/waveguide is controlled not only by solar wind parameters but also by magnetic local time of observation point.