A higher correlation tends to yield a more accurate prediction,so that a correlation as high as possible has been searched for and employed in the prediction of solar activity.Instead of using geomagnetic activity dur...A higher correlation tends to yield a more accurate prediction,so that a correlation as high as possible has been searched for and employed in the prediction of solar activity.Instead of using geomagnetic activity during the descending phase of the solar cycle,the minimum annual aa index (aa min) is used as an indicator for the ensuing maximum amplitude (R m) of the sunspot cycle.A four-cycle periodicity is roughly shown in the correlation between R m and aa min.The widely accepted Ohl's precursor prediction method often fails due to the prediction error relative to its estimated uncertainty.An accurate prediction depends on the positive variation of the correlation rather than a higher correlation.Previous experiences by using this method indicate that a prediction for the next cycle,R m (24)=80 ± 17,is likely to fail,implying that the sunspot maximum of Cycle 24 may be either smaller than 63 or greater than 97.展开更多
In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars:(i) da...In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars:(i) data pertaining to stellar cycles from Ca H/K emission over many years;(ii) X-ray data indicating hot coronal activity;(iii) starspot data(especially about giant polar spots); and(iv) data pertaining to stellar superflares. Then we describe the current status of solar dynamo modelling—giving an introduction to the flux transport dynamo model, the currently favoured model for the solar cycle. While an extrapolation of this model to solar-like stars can explain some aspects of observational data, some other aspects of the data still remain to be theoretically explained. It is not clear right now whether we need a different kind of dynamo mechanism for stars having giant starspots or producing very strong superflares.展开更多
基金supported by the Chinese Academy of Sciences (Grant No.KGCX3-SYW-403-10)the National Natural Science Foundation of China (Grant Nos.10973020,10673017 and 40890161)
文摘A higher correlation tends to yield a more accurate prediction,so that a correlation as high as possible has been searched for and employed in the prediction of solar activity.Instead of using geomagnetic activity during the descending phase of the solar cycle,the minimum annual aa index (aa min) is used as an indicator for the ensuing maximum amplitude (R m) of the sunspot cycle.A four-cycle periodicity is roughly shown in the correlation between R m and aa min.The widely accepted Ohl's precursor prediction method often fails due to the prediction error relative to its estimated uncertainty.An accurate prediction depends on the positive variation of the correlation rather than a higher correlation.Previous experiences by using this method indicate that a prediction for the next cycle,R m (24)=80 ± 17,is likely to fail,implying that the sunspot maximum of Cycle 24 may be either smaller than 63 or greater than 97.
基金provided by the J C Bose Fellowship awarded by the Department of Science and Technology, Government of India
文摘In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars:(i) data pertaining to stellar cycles from Ca H/K emission over many years;(ii) X-ray data indicating hot coronal activity;(iii) starspot data(especially about giant polar spots); and(iv) data pertaining to stellar superflares. Then we describe the current status of solar dynamo modelling—giving an introduction to the flux transport dynamo model, the currently favoured model for the solar cycle. While an extrapolation of this model to solar-like stars can explain some aspects of observational data, some other aspects of the data still remain to be theoretically explained. It is not clear right now whether we need a different kind of dynamo mechanism for stars having giant starspots or producing very strong superflares.