Pressure losses in flow components are generally characterized either by pressure loss coefficients or by discharge coefficients. The pressure drop for incompressible flow across a screen of fractional free area a is ...Pressure losses in flow components are generally characterized either by pressure loss coefficients or by discharge coefficients. The pressure drop for incompressible flow across a screen of fractional free area a is often calculated from widely used correlation provided in Perry's Handbook. This correlation was developed based on experimental work which have covered a wide range of fractional free area (a = 0.14 to 0.79). The present work aims at validation for a flow in plain square mesh screen with a particular fractional free area (porosity, a) of 0.25 using CFD (Computational Fluid Dynamics) approach. The simulations are carried out for wide range of screen Reynolds number (Re = 0.1 to 105) covering both laminar and turbulent flow regimes. Initial simulations are carried out for incompressible fluid (water) and further extended to compressible fluid (air). Discharge coefficients obtained from the simulations are compared with experimental values. Effect of compressibility on discharge coefficients is described.展开更多
For a circular lobed nozzle with the exit plane displaced from the center body,adding a central plug at exit or replacing the nozzle with an alternating-lobe nozzle can improve the mixing effectiveness.In this study,n...For a circular lobed nozzle with the exit plane displaced from the center body,adding a central plug at exit or replacing the nozzle with an alternating-lobe nozzle can improve the mixing effectiveness.In this study,numerical investigations of jet mixing in the lobed nozzles with a central plug and alternating-lobe nozzles in pumping operation were conducted.The effects of the central plugs with the wake ranging from attached to separated flow on the mixing were analyzed,along with the mechanism of improving the mixing performance in a"sword"alternating-lobe nozzle.The simulation results reveal that the large-scale mixing rate,which is dominated by streamwise vortices,is related to the intensity of the attainable heat and mass transfer in the streamwise vortices.The effects of the streamwise vortices on the normal vortex ring are virtually a manifestation of the heat and mass transfer/mixing process of the streamwise vortices.The simulation results also show that the central plug with the attached rear-flow performs better in improving the mixing effectiveness and pumping performance;on the contrary,if the rear-flow is separated,more pressure loss will be induced.In particular,a completely separated flow over the rear of the central plug will severely degrade the attainable heat and mass transfer in the streamwise vortices.For the sword alternating-lobe nozzle,wider sword deep troughs help to increase the flux of the secondary stream around the core region and delay the confluence of the primary stream in the region between the deep and shallow troughs.Thus,the mixing is improved in the middle and posterior segments.Compared to the lobed nozzle with a central plug,the improved sword alternating-lobe nozzle can achieve a higher mixing effectiveness with much less pressure loss,which is preferred in situations when the power loss of the engine is restricted.展开更多
Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and ...Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.展开更多
文摘Pressure losses in flow components are generally characterized either by pressure loss coefficients or by discharge coefficients. The pressure drop for incompressible flow across a screen of fractional free area a is often calculated from widely used correlation provided in Perry's Handbook. This correlation was developed based on experimental work which have covered a wide range of fractional free area (a = 0.14 to 0.79). The present work aims at validation for a flow in plain square mesh screen with a particular fractional free area (porosity, a) of 0.25 using CFD (Computational Fluid Dynamics) approach. The simulations are carried out for wide range of screen Reynolds number (Re = 0.1 to 105) covering both laminar and turbulent flow regimes. Initial simulations are carried out for incompressible fluid (water) and further extended to compressible fluid (air). Discharge coefficients obtained from the simulations are compared with experimental values. Effect of compressibility on discharge coefficients is described.
基金supported by the Assembly Research Foundation of China
文摘For a circular lobed nozzle with the exit plane displaced from the center body,adding a central plug at exit or replacing the nozzle with an alternating-lobe nozzle can improve the mixing effectiveness.In this study,numerical investigations of jet mixing in the lobed nozzles with a central plug and alternating-lobe nozzles in pumping operation were conducted.The effects of the central plugs with the wake ranging from attached to separated flow on the mixing were analyzed,along with the mechanism of improving the mixing performance in a"sword"alternating-lobe nozzle.The simulation results reveal that the large-scale mixing rate,which is dominated by streamwise vortices,is related to the intensity of the attainable heat and mass transfer in the streamwise vortices.The effects of the streamwise vortices on the normal vortex ring are virtually a manifestation of the heat and mass transfer/mixing process of the streamwise vortices.The simulation results also show that the central plug with the attached rear-flow performs better in improving the mixing effectiveness and pumping performance;on the contrary,if the rear-flow is separated,more pressure loss will be induced.In particular,a completely separated flow over the rear of the central plug will severely degrade the attainable heat and mass transfer in the streamwise vortices.For the sword alternating-lobe nozzle,wider sword deep troughs help to increase the flux of the secondary stream around the core region and delay the confluence of the primary stream in the region between the deep and shallow troughs.Thus,the mixing is improved in the middle and posterior segments.Compared to the lobed nozzle with a central plug,the improved sword alternating-lobe nozzle can achieve a higher mixing effectiveness with much less pressure loss,which is preferred in situations when the power loss of the engine is restricted.
基金Financially supported from"National Natural Science Foundation of China"(Grant No.51206035)"the Foundation for Innovative Research Groups of the National Natural Science Foundation of China"(Grant No.51121004)
文摘Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.