Objectives:This study aimed to systematically evaluate the effects of constraint-induced aphasia therapy(OAT)for aphasic patients reported by randomized controlled trials.Methods:Relevant randomized controlled trials ...Objectives:This study aimed to systematically evaluate the effects of constraint-induced aphasia therapy(OAT)for aphasic patients reported by randomized controlled trials.Methods:Relevant randomized controlled trials were retrieved from 11 electronic databases.A methodological quality assessment was conducted in accordance with the Cochrane Handbook,and metaanalyses were performed by using RevMan 5.2.A descriptive analysis was conducted when the included trials were not suitable for a meta-analysis.Results:A total of 12 trials were included.A statistically significant group difference was shown from the meta-analysis in the results measured by the Western Aphasia Battery(random-effects model,MD=1.23,95%CI=0.31 to 2.14,P<0.01).However,there were no statistically significant differences shown in the results of the Boston Naming Test(fixed-effects model,MD=-1.79,95%CI=-11.19 to Z62,P>0.05)and Aachen Aphasia Test(fixed-effects model,MD=-1.11,95%CI=-4.49 to 2.27,P>0.05).The descriptive analysis showed positive results in language performances of naming,repetition,and comprehension.Conclusion:This systematic review indicated that CIAT was efficient for improving language performance with regard to naming,comprehension,repetition,written language,and oral language based on the current evidence.And this review provides some meaningful guides for clinical practice:expand the therapy duration to 2 or 3 h per day,focus on naming,and choose the best assessment tool.It also indicates a need for more rigorous,large-scale,and high-quality trials in the future.展开更多
The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law harde...The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.展开更多
No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become th...No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become the inevitable trend for slope vegetation in pursuit of protecting ecological condition, decreasing soil erosion, maintaining ecological balance and beautifying environment of slope. The concept of original ecological tridimensional slope vegetation is proposed in this paper, and the original ecological tridimensional slope vegetation is studied through theoretical analysis and experiments. Specifically, the mechanical effect of slope vegetation in reinforcing the cohesion and shear strength of soil mass is firstly discussed, and then experiments are performed to study the water interception and containing function of slope under various vegetation conditions. Moreover, the relation between soil moisture and cohesion, the relation between root distribution density and cohesion, and the relation between root distribution density and soil shear strength are also studied based on experiments.Finally, based on field observation, the soil erosion states of slope under various vegetation conditions are comparatively studied. It is found that the original ecological tridimensional slope, which combines grass,shrub and tree, can generate comprehensive slope protection effects, and hence strengthen the slope protection ability and bring multiple slope protection benefits. Thereby, the theoretical foundation for developing original ecological tridimensional slope vegetation is established.展开更多
Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the...Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.展开更多
The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fl...The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fluxed wall. The investigation has been conducted in the heat exchanger tube inserted with various twisted-tape numbers for co- and counter-twist arrangements for the turbulent air flow, Reynolds number (Re) from 5300 to 24000. The typical single twisted-tape inserts at two twist ratios, y/w = 4 and 5, are used as the base case, while the other multiple twisted-tape inserts are aty/w = 4 only. The experimental results of heat transfer and pressure drop in terms of Nusselt number (Nu) and friction factor 00, respectively, reveal that Nu increases with the increment of Re and of twisted-tape number. The values of Nu for the inserted tube are in a range of 1.15-2.12 times that for the plain tube while f is 1.9-4.1 times. The thermal enhancement factor of the inserted tube under similar pumping power is evaluated and found to be above unity except for the single and the double co-twisted tapes. The quadruple counter-twisted tape insert provides the maximum thermal performance.展开更多
Structural integrity procedures were used to demonstrate the fitness for the purpose of engineering components transmitting loads. The prediction of the fracture strength of titanium alloys containing sharp notches th...Structural integrity procedures were used to demonstrate the fitness for the purpose of engineering components transmitting loads. The prediction of the fracture strength of titanium alloys containing sharp notches through the damage model depends on the un-notched strength and the critical length of the damage zone ahead of the notch. In general, the critical length of the damage zone depends on the material, specimen, and size of the sharp notch. Modifications were made in one of the stress fracture criteria known as the average stress criterion for accurate prediction of notched tensile strength of titanium alloy specimen containing sharp notches. To examine the adequacy of these modifications, fracture data of center-cracked titanium alloys with various thicknesses are considered. The notched (fracture) strength estimates are found to be close to the test results. The modified average stress criterion is very simple to predict the notched tensile strength.展开更多
A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visu...A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.展开更多
Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the com...Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.展开更多
Fracture data of both parent metal and weldment metals from surface cracked tensile plates made of 2219-T87 Al alloy at cryogenic temperatures were correlated using a modified inherent flaw model. Fracture parameters ...Fracture data of both parent metal and weldment metals from surface cracked tensile plates made of 2219-T87 Al alloy at cryogenic temperatures were correlated using a modified inherent flaw model. Fracture parameters to generate the failure assessment diagram were determined for the material. Fracture analysis was carried out considering the ultimate tensile strength value and the fracture data of aluminium base metal and weldment metal generated from center–surface cracked tensile specimens having different thicknesses. The failure assessment diagram of a material generated from tensile fracture plate configuration can be applied to failure pressure estimation of any cracked component, made of the same material.展开更多
In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under st...In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.展开更多
In this experimental work, three groups of cement-slag mortars namely OPC, OPC-slag, and slag mortars were made. All were cured in both water and air under room temperature. Strength development was studied up to 90 d...In this experimental work, three groups of cement-slag mortars namely OPC, OPC-slag, and slag mortars were made. All were cured in both water and air under room temperature. Strength development was studied up to 90 days. The mortars were prepared using 0%, 50%, and 100% replacement with slag. The sensitivity for all groups was obtained against the curing regime with the highest being attributed to the slag mortars. The highest and lowest strengths at early ages were attributed to OPC and slag mortars when both were cured in water. The highest and lowest strengths were attributed to OPC-slag and slag mortars at later ages, respectively. The highest strengths for OPC-slag, OPC, and slag mortars were as 72.0, 64.0, and 21.5 MPa at 90 days when the specimens cured in water, respectively. Strength loss was observed for all groups at later ages when cured in air under room temperature. The maximum and minimum, of about 8.0% and 1.3%, occurred at 56 and 90 days for slag and OPC-slag mortars, respectively.展开更多
Objective To investigate the status of evoked potentials in obsessive-compulsive disorder(OCD). Methods Evoked potentials P300, auditory brainstem response (ABR) and visual evoked potential ( VEP) were recorded from 3...Objective To investigate the status of evoked potentials in obsessive-compulsive disorder(OCD). Methods Evoked potentials P300, auditory brainstem response (ABR) and visual evoked potential ( VEP) were recorded from 35 OCD patients and 28 normal controls (NC) with a Nicolet Spirit Instrument. 23 of the OCD patients were followed up after 5 months with the same markers. Results Compared with NC, OCD patients showed decreased P3 of P300 amplitude (OCD group 3. 5 ±1. 6μv vs. NC group 5.9 ±2. 1μv, P <0. 01), delayed V latency (6.4±0. 4ms vs. 5. 5 ±0. 3ms, P <0. 01) and increased V amplitude(0. 35±0. 1μv vs. 0. 16 ±0.09μv, P <0. 05) of ABR and delayed P2 of VEP latency (199±39ms vs. 183±28ms, P <0. 05). The follow-up measures of evoked potentials suggested that decreased P3 of P300 amplitude and delayed P2 of VEP latency might be state markers of OCD, while decreased V amplitude and delayed V of ABR latency might be trait markers of OCD. Conclusion The changes of P300 and VEP are related to clinical status of OCD patients, while the association between ABR and OCD symptoms need to be further investigated.展开更多
The paper described experimental investigation of heat transfer and single-phase pressure drop through tubes with different rotor-assembled strands inserted in the Reynolds number range of 800-9000 with lubricant as w...The paper described experimental investigation of heat transfer and single-phase pressure drop through tubes with different rotor-assembled strands inserted in the Reynolds number range of 800-9000 with lubricant as working fluid. In the experiment, fixed mounts were employed to eliminate the entrance effect. The experimental results showed that the employment of fixed mounts led to a visible bias of friction factor in the laminar regime while it could not affect the Nusselt numbers significantly. Experiment for the tube inserted with rotors-assembled strand showed remarkable improvement for heat transfer with the Nusselt number increased by 200%-225% in the laminar regime and 125%-160% in the transitional regime. Meanwhile, the friction factor increased inevitably by 200%-300% within the same range of Reynolds number. The comparison of different rotor-assembled strands in-serted tubes and plain tube showed that the heat transfer benefited from the increase of the diameter of rotor-assembled strand with the same lead and the decrease of the lead of rotor-assembled strand, so does the friction factor. Based on experimental data and thorough multivariant linear normal regression method, the correlations of average Nusselt number and friction factor are established.展开更多
In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zheji...In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.展开更多
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i...In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.展开更多
基金This study received no specific grant from any funding agency in the public,commercial,or not-for-profit sectors
文摘Objectives:This study aimed to systematically evaluate the effects of constraint-induced aphasia therapy(OAT)for aphasic patients reported by randomized controlled trials.Methods:Relevant randomized controlled trials were retrieved from 11 electronic databases.A methodological quality assessment was conducted in accordance with the Cochrane Handbook,and metaanalyses were performed by using RevMan 5.2.A descriptive analysis was conducted when the included trials were not suitable for a meta-analysis.Results:A total of 12 trials were included.A statistically significant group difference was shown from the meta-analysis in the results measured by the Western Aphasia Battery(random-effects model,MD=1.23,95%CI=0.31 to 2.14,P<0.01).However,there were no statistically significant differences shown in the results of the Boston Naming Test(fixed-effects model,MD=-1.79,95%CI=-11.19 to Z62,P>0.05)and Aachen Aphasia Test(fixed-effects model,MD=-1.11,95%CI=-4.49 to 2.27,P>0.05).The descriptive analysis showed positive results in language performances of naming,repetition,and comprehension.Conclusion:This systematic review indicated that CIAT was efficient for improving language performance with regard to naming,comprehension,repetition,written language,and oral language based on the current evidence.And this review provides some meaningful guides for clinical practice:expand the therapy duration to 2 or 3 h per day,focus on naming,and choose the best assessment tool.It also indicates a need for more rigorous,large-scale,and high-quality trials in the future.
基金Project(N110607002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51074052)supported by the National Natural Science Foundation of China
文摘The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.
基金supported by National Natural Science Foundation of China (Grant No. 41372307)the Yunan Provincial Communication Research Fund (Grant No. 2010 (A) 06-b)the Young Scholar Foundation of Central South University of Forestry and Technology (Grant No. 2008051B)
文摘No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become the inevitable trend for slope vegetation in pursuit of protecting ecological condition, decreasing soil erosion, maintaining ecological balance and beautifying environment of slope. The concept of original ecological tridimensional slope vegetation is proposed in this paper, and the original ecological tridimensional slope vegetation is studied through theoretical analysis and experiments. Specifically, the mechanical effect of slope vegetation in reinforcing the cohesion and shear strength of soil mass is firstly discussed, and then experiments are performed to study the water interception and containing function of slope under various vegetation conditions. Moreover, the relation between soil moisture and cohesion, the relation between root distribution density and cohesion, and the relation between root distribution density and soil shear strength are also studied based on experiments.Finally, based on field observation, the soil erosion states of slope under various vegetation conditions are comparatively studied. It is found that the original ecological tridimensional slope, which combines grass,shrub and tree, can generate comprehensive slope protection effects, and hence strengthen the slope protection ability and bring multiple slope protection benefits. Thereby, the theoretical foundation for developing original ecological tridimensional slope vegetation is established.
文摘Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.
基金the Thailand Research Fund(TRF)(Grant No.Ph D/0143/2552)
文摘The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fluxed wall. The investigation has been conducted in the heat exchanger tube inserted with various twisted-tape numbers for co- and counter-twist arrangements for the turbulent air flow, Reynolds number (Re) from 5300 to 24000. The typical single twisted-tape inserts at two twist ratios, y/w = 4 and 5, are used as the base case, while the other multiple twisted-tape inserts are aty/w = 4 only. The experimental results of heat transfer and pressure drop in terms of Nusselt number (Nu) and friction factor 00, respectively, reveal that Nu increases with the increment of Re and of twisted-tape number. The values of Nu for the inserted tube are in a range of 1.15-2.12 times that for the plain tube while f is 1.9-4.1 times. The thermal enhancement factor of the inserted tube under similar pumping power is evaluated and found to be above unity except for the single and the double co-twisted tapes. The quadruple counter-twisted tape insert provides the maximum thermal performance.
文摘Structural integrity procedures were used to demonstrate the fitness for the purpose of engineering components transmitting loads. The prediction of the fracture strength of titanium alloys containing sharp notches through the damage model depends on the un-notched strength and the critical length of the damage zone ahead of the notch. In general, the critical length of the damage zone depends on the material, specimen, and size of the sharp notch. Modifications were made in one of the stress fracture criteria known as the average stress criterion for accurate prediction of notched tensile strength of titanium alloy specimen containing sharp notches. To examine the adequacy of these modifications, fracture data of center-cracked titanium alloys with various thicknesses are considered. The notched (fracture) strength estimates are found to be close to the test results. The modified average stress criterion is very simple to predict the notched tensile strength.
基金Project (50099620) supported by the National Natural Science Foundation of China
文摘A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.
基金the Natural Science Foundation of Jiangsu Province(No.BK20141130)the Fundamental Research Funds for the Central Universities(No.2014QNB27)
文摘Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.
文摘Fracture data of both parent metal and weldment metals from surface cracked tensile plates made of 2219-T87 Al alloy at cryogenic temperatures were correlated using a modified inherent flaw model. Fracture parameters to generate the failure assessment diagram were determined for the material. Fracture analysis was carried out considering the ultimate tensile strength value and the fracture data of aluminium base metal and weldment metal generated from center–surface cracked tensile specimens having different thicknesses. The failure assessment diagram of a material generated from tensile fracture plate configuration can be applied to failure pressure estimation of any cracked component, made of the same material.
基金Project(51175424)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by‘111’Program of ChinaProject(JC20110257)supported by the Basic Research Foundation of Northwestern Polytechnical University,China
文摘In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.
文摘In this experimental work, three groups of cement-slag mortars namely OPC, OPC-slag, and slag mortars were made. All were cured in both water and air under room temperature. Strength development was studied up to 90 days. The mortars were prepared using 0%, 50%, and 100% replacement with slag. The sensitivity for all groups was obtained against the curing regime with the highest being attributed to the slag mortars. The highest and lowest strengths at early ages were attributed to OPC and slag mortars when both were cured in water. The highest and lowest strengths were attributed to OPC-slag and slag mortars at later ages, respectively. The highest strengths for OPC-slag, OPC, and slag mortars were as 72.0, 64.0, and 21.5 MPa at 90 days when the specimens cured in water, respectively. Strength loss was observed for all groups at later ages when cured in air under room temperature. The maximum and minimum, of about 8.0% and 1.3%, occurred at 56 and 90 days for slag and OPC-slag mortars, respectively.
基金Supported by the Fund of ' 100 Distinguished Investigator' of Shanghai Sanitary Authorities(97BR030)Fund of Clinical Medicine Center of Shanghai Mental Disorder(ZX02A14).
文摘Objective To investigate the status of evoked potentials in obsessive-compulsive disorder(OCD). Methods Evoked potentials P300, auditory brainstem response (ABR) and visual evoked potential ( VEP) were recorded from 35 OCD patients and 28 normal controls (NC) with a Nicolet Spirit Instrument. 23 of the OCD patients were followed up after 5 months with the same markers. Results Compared with NC, OCD patients showed decreased P3 of P300 amplitude (OCD group 3. 5 ±1. 6μv vs. NC group 5.9 ±2. 1μv, P <0. 01), delayed V latency (6.4±0. 4ms vs. 5. 5 ±0. 3ms, P <0. 01) and increased V amplitude(0. 35±0. 1μv vs. 0. 16 ±0.09μv, P <0. 05) of ABR and delayed P2 of VEP latency (199±39ms vs. 183±28ms, P <0. 05). The follow-up measures of evoked potentials suggested that decreased P3 of P300 amplitude and delayed P2 of VEP latency might be state markers of OCD, while decreased V amplitude and delayed V of ABR latency might be trait markers of OCD. Conclusion The changes of P300 and VEP are related to clinical status of OCD patients, while the association between ABR and OCD symptoms need to be further investigated.
基金Supported by the National Natural Science Foundation of Beijing (3102023) and the National Science and Technology Support Plan Project (2011BAA04B02).
文摘The paper described experimental investigation of heat transfer and single-phase pressure drop through tubes with different rotor-assembled strands inserted in the Reynolds number range of 800-9000 with lubricant as working fluid. In the experiment, fixed mounts were employed to eliminate the entrance effect. The experimental results showed that the employment of fixed mounts led to a visible bias of friction factor in the laminar regime while it could not affect the Nusselt numbers significantly. Experiment for the tube inserted with rotors-assembled strand showed remarkable improvement for heat transfer with the Nusselt number increased by 200%-225% in the laminar regime and 125%-160% in the transitional regime. Meanwhile, the friction factor increased inevitably by 200%-300% within the same range of Reynolds number. The comparison of different rotor-assembled strands in-serted tubes and plain tube showed that the heat transfer benefited from the increase of the diameter of rotor-assembled strand with the same lead and the decrease of the lead of rotor-assembled strand, so does the friction factor. Based on experimental data and thorough multivariant linear normal regression method, the correlations of average Nusselt number and friction factor are established.
基金Projects(10472130,41202225) supported by the National Natural Science Foundation of China
文摘In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.
基金Projects(51304125,51379114)supported by the National Natural Science Foundation of ChinaProject(BS2013NJ004)supported by Award Fund for Outstanding Young and Middle-Aged Scientist of Shangdong Province,ChinaProject(201301004)supported by the Innovation Fund for Postdoctor of Shandong Province,China
文摘In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.