This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guang...This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guangdong and Hainan. From the 1950s to 1986, the annual rate of soil erosion increased by 3.4%. From 1986 to 1996 and from 1996 to 2000, the annual rates of soil erosion decreased by 2.0% and 0.32%, respectively. Field surveys showed that from 2000 to 2005, the area of soil and water loss decreased annually by 1.2%. This decrease was a result of large-scale erosion control activities across China. Although the eroded soil has been restored, the restoration process is very slow and full restoration will take a long time. Our report suggests that controlling soil and water loss is a challenging task, and additional measures must be taken to effectively control the soil erosion in the red soil region.展开更多
Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was m...Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using ^15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.展开更多
Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the com...Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.展开更多
Greenhouse gas emissions,nitrogen and phosphorous losses through ammonia volatilization,leaching and surface drainage from rice paddy under efficient irrigation and drainage were analyzed based on field experimental d...Greenhouse gas emissions,nitrogen and phosphorous losses through ammonia volatilization,leaching and surface drainage from rice paddy under efficient irrigation and drainage were analyzed based on field experimental data in order to reveal the eco-environmental impacts of efficient irrigation and drainage on rice paddy.The results showed that total methane emission from rice paddy under the controlled irrigation was reduced by more than 80% and total nitrous oxide emission increased by 15.9% compared with flooding irrigation.Seasonal comprehensive global warming potentials(GWP) of methane and nitrous oxide were 62.23 gCO2 m-2 for rice paddy under the controlled irrigation,reduced by 68.0% compared with flooding irrigation.Due to large reduction in seepage and surface drainages,nitrogen and phosphorous losses through leaching were reduced by 40.1% and 54.8%,nitrogen and phosphorous losses through surface drainage were reduced by 53.9% and 51.6% from rice paddy under efficient irrigation and drainage compared with traditional irrigation and drainage.Nitrogen loss through ammonia volatilization was reduced by 14.0%.Efficient irrigation and drainage management is helpful to mitigate greenhouse gases emission,nitrogen and phosphorus losses and their pollution on groundwater and surface water.展开更多
The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitab...The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system(GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation(RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t·km^(–2)·a^(–1), the minimum possible soil erosion modulus was 1921 t·km^(–2)·a^(–1), and the soil erosion control degree was 0.57(medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t·km^(–2)·a^(–1) increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg·a^(–1) to 459 kg·a^(–1) under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.展开更多
基金funded by the "973" Program of China (2007CB407206)the ISSCAS Innovation Program (ISSASIP0602)the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-438)
文摘This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guangdong and Hainan. From the 1950s to 1986, the annual rate of soil erosion increased by 3.4%. From 1986 to 1996 and from 1996 to 2000, the annual rates of soil erosion decreased by 2.0% and 0.32%, respectively. Field surveys showed that from 2000 to 2005, the area of soil and water loss decreased annually by 1.2%. This decrease was a result of large-scale erosion control activities across China. Although the eroded soil has been restored, the restoration process is very slow and full restoration will take a long time. Our report suggests that controlling soil and water loss is a challenging task, and additional measures must be taken to effectively control the soil erosion in the red soil region.
文摘Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using ^15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.
基金the Natural Science Foundation of Jiangsu Province(No.BK20141130)the Fundamental Research Funds for the Central Universities(No.2014QNB27)
文摘Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.
基金supported by the National Natural Science Foundation of China (Grant Nos 50839002 and 50809022)the National Key Tech-nologies R & D Program of China during the 11th Fiveyear Plan Period (Grant No 2006BAD11B09)
文摘Greenhouse gas emissions,nitrogen and phosphorous losses through ammonia volatilization,leaching and surface drainage from rice paddy under efficient irrigation and drainage were analyzed based on field experimental data in order to reveal the eco-environmental impacts of efficient irrigation and drainage on rice paddy.The results showed that total methane emission from rice paddy under the controlled irrigation was reduced by more than 80% and total nitrous oxide emission increased by 15.9% compared with flooding irrigation.Seasonal comprehensive global warming potentials(GWP) of methane and nitrous oxide were 62.23 gCO2 m-2 for rice paddy under the controlled irrigation,reduced by 68.0% compared with flooding irrigation.Due to large reduction in seepage and surface drainages,nitrogen and phosphorous losses through leaching were reduced by 40.1% and 54.8%,nitrogen and phosphorous losses through surface drainage were reduced by 53.9% and 51.6% from rice paddy under efficient irrigation and drainage compared with traditional irrigation and drainage.Nitrogen loss through ammonia volatilization was reduced by 14.0%.Efficient irrigation and drainage management is helpful to mitigate greenhouse gases emission,nitrogen and phosphorus losses and their pollution on groundwater and surface water.
基金National Natural Science Foundation of China,No.41401305,No.41330858The Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,No.K318009902-14
文摘The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system(GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation(RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t·km^(–2)·a^(–1), the minimum possible soil erosion modulus was 1921 t·km^(–2)·a^(–1), and the soil erosion control degree was 0.57(medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t·km^(–2)·a^(–1) increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg·a^(–1) to 459 kg·a^(–1) under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.