The Revised Universal Soil Loss Equation (RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system (GIS) and remote sensing (RS) technologies. ...The Revised Universal Soil Loss Equation (RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system (GIS) and remote sensing (RS) technologies. To improve the accuracy of soil-erosion estimates, a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index (NDVI) datasets. The new C-factor was then applied in the RUSLE to integrate rainfall, soil, vegetation, and topography data of different periods, and thus monitor the distribution of soil erosion patterns and their dynamics during a 3o-year period of the upstream watershed of Miynn Reservoir (UWMR), China. The results showed that the new C-factor estimation method, which considers land cover status and dynamics, and explicitly incorporates within-land cover variability, was more rational, quantitative, and reliable. An average annual soil loss in UWMR of 25.68, 21.04, and 16.8o t ha-1 a-1 was estimated for 1990, 2000 and 2010, respectively, corroborated by comparing spatial and temporal variation in sediment yield. Between 2000 and 2010, a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1 a^-1, while during 1990-2000 such lands only increased on average by o.46%. Areas that classified as severe, very severe and extremely severe accounted for 5.68% of the total UWMR in 2010, and primarily occurred in dry areas or grasslands of sloping fields. The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners. Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land, afforestation, or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.展开更多
Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This ...Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.展开更多
In this study, the position of all major rill and gully erosion sites were located using hand held GPS (Global Positioning System) receiver during reconnaissance surveys. Based on severity rating and geopolitical co...In this study, the position of all major rill and gully erosion sites were located using hand held GPS (Global Positioning System) receiver during reconnaissance surveys. Based on severity rating and geopolitical considerations, six of the erosion gully sites were selected for monitoring. Control points were established around each of the gully sites using three Leica 500 dual frequency GPS receivers by method of DGPS (differential GPS) surveys. Detailed topographical survey of the gully sites was carried out using total stations. With the aid of SPOT satellite imageries in combination with total station data and GIS (geographic information system) location maps, contoured maps along with DEM (digital elevation model) were generated using ARCGIS 9.2 software. The morphological parameters of the gullies including depth, width, length and area of the gullies were determined. Volumetric estimate of the amount of soil loss from gully erosion was also carried out. Soil samples were recovered from the gully sites to determine their erodibility and other parameters to be used for soil loss modeling. The result of the studies was used as an indicator for determining the gully initiation point. Slope-area relationship and threshold of gully initiation was established. The minimum volume of soil loss occurred in gully No. 2 (Queen Ede). The minimum AS^2 value was 345 while the maximum was 3,267.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.41101399)the open fund of State Key Laboratory of Remote Sensing ScienceJointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University,China
文摘The Revised Universal Soil Loss Equation (RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system (GIS) and remote sensing (RS) technologies. To improve the accuracy of soil-erosion estimates, a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index (NDVI) datasets. The new C-factor was then applied in the RUSLE to integrate rainfall, soil, vegetation, and topography data of different periods, and thus monitor the distribution of soil erosion patterns and their dynamics during a 3o-year period of the upstream watershed of Miynn Reservoir (UWMR), China. The results showed that the new C-factor estimation method, which considers land cover status and dynamics, and explicitly incorporates within-land cover variability, was more rational, quantitative, and reliable. An average annual soil loss in UWMR of 25.68, 21.04, and 16.8o t ha-1 a-1 was estimated for 1990, 2000 and 2010, respectively, corroborated by comparing spatial and temporal variation in sediment yield. Between 2000 and 2010, a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1 a^-1, while during 1990-2000 such lands only increased on average by o.46%. Areas that classified as severe, very severe and extremely severe accounted for 5.68% of the total UWMR in 2010, and primarily occurred in dry areas or grasslands of sloping fields. The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners. Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land, afforestation, or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.
文摘Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.
文摘In this study, the position of all major rill and gully erosion sites were located using hand held GPS (Global Positioning System) receiver during reconnaissance surveys. Based on severity rating and geopolitical considerations, six of the erosion gully sites were selected for monitoring. Control points were established around each of the gully sites using three Leica 500 dual frequency GPS receivers by method of DGPS (differential GPS) surveys. Detailed topographical survey of the gully sites was carried out using total stations. With the aid of SPOT satellite imageries in combination with total station data and GIS (geographic information system) location maps, contoured maps along with DEM (digital elevation model) were generated using ARCGIS 9.2 software. The morphological parameters of the gullies including depth, width, length and area of the gullies were determined. Volumetric estimate of the amount of soil loss from gully erosion was also carried out. Soil samples were recovered from the gully sites to determine their erodibility and other parameters to be used for soil loss modeling. The result of the studies was used as an indicator for determining the gully initiation point. Slope-area relationship and threshold of gully initiation was established. The minimum volume of soil loss occurred in gully No. 2 (Queen Ede). The minimum AS^2 value was 345 while the maximum was 3,267.