According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that disting...According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that distinguishing the occurring of the pressure bump were put forward. This criteria have been applied successfully in the comprehensive prevent of pressure bumps in Tangshan colliery.展开更多
A novel horizontal trap-door test system was devised in this study to analyze the face stability of shield tunnels in sands.The test system can be used to investigate both the longitudinal and cross sections of the fa...A novel horizontal trap-door test system was devised in this study to analyze the face stability of shield tunnels in sands.The test system can be used to investigate both the longitudinal and cross sections of the face failure simultaneously at one single apparatus and was employed to perform face stability tests on small-scaled tunnel models at single gravity.The lateral support pressures and failure zones were studied with varying sand materials and earth covers.The results demonstrate that the tunnel face moves back,the lateral active earth pressure on the tunnel face decreases rapidly to a residual value,and the lateral pressure distribution can be categorized into three stages during the failure process:1)initial state;2)pressure dissipation stage;and 3)pressure zone diminution stage.Furthermore,face failure firstly develops from a stable condition to the local failure state,and then continues to develop to the global failure state that can be divided into two sub-zones with different failure mechanisms:rotational failure zone(lower zone)and gravitational failure zone(upper zone).Further discussion shows that under the effects of soil arching,the shape of the gravitational failure zone can adopt arch shaped(most frequent)and column shaped(in shallow tunnels).Limit support pressure for face stability usually appears atδ/D=0.2%−0.5%(ratio of face displacement to tunnel diameter).展开更多
A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize...A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize the cavitation bubble, while inertial force destabilizes the cavitation bubble. The droplet viscosity plays a dominant role on the stability of cavitation bubbles compared with that of air and bubble. Bubble–droplet radius ratio is a key factor to control the bubble stability, especially in the high radius ratio range. Internal hydrodynamic and surface tension forces are found to stabilize the cavitation bubble, while bubble stability has little relationship with the external hydrodynamic force. Inertia makes bubble breakup easily, however, the breakup time is only slightly changed when bubble growth speed reaches a certain value(50 m·s-1). In contrast, viscous force makes bubble hard to break. With the increasing initial bubble–droplet radius ratio, the bubble growth rate increases, the bubble breakup radius decreases, and the bubble breakup time becomes shorter.展开更多
文摘According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that distinguishing the occurring of the pressure bump were put forward. This criteria have been applied successfully in the comprehensive prevent of pressure bumps in Tangshan colliery.
基金Project(51678037)supported by the National Natural Science Foundation of ChinaProject(2015CB057802)supported by the National Basic Research Program of ChinaProject(BLX2015-20)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A novel horizontal trap-door test system was devised in this study to analyze the face stability of shield tunnels in sands.The test system can be used to investigate both the longitudinal and cross sections of the face failure simultaneously at one single apparatus and was employed to perform face stability tests on small-scaled tunnel models at single gravity.The lateral support pressures and failure zones were studied with varying sand materials and earth covers.The results demonstrate that the tunnel face moves back,the lateral active earth pressure on the tunnel face decreases rapidly to a residual value,and the lateral pressure distribution can be categorized into three stages during the failure process:1)initial state;2)pressure dissipation stage;and 3)pressure zone diminution stage.Furthermore,face failure firstly develops from a stable condition to the local failure state,and then continues to develop to the global failure state that can be divided into two sub-zones with different failure mechanisms:rotational failure zone(lower zone)and gravitational failure zone(upper zone).Further discussion shows that under the effects of soil arching,the shape of the gravitational failure zone can adopt arch shaped(most frequent)and column shaped(in shallow tunnels).Limit support pressure for face stability usually appears atδ/D=0.2%−0.5%(ratio of face displacement to tunnel diameter).
基金Supported by the National Natural Science Foundation of China(51276011)the National High Technology Research and Development Program of China(2013AA065303)+1 种基金Beijing Municipal Natural Science Foundation of China(3132016)the Opening Foundation of State Key Laboratory of Engines(K2013-3)
文摘A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize the cavitation bubble, while inertial force destabilizes the cavitation bubble. The droplet viscosity plays a dominant role on the stability of cavitation bubbles compared with that of air and bubble. Bubble–droplet radius ratio is a key factor to control the bubble stability, especially in the high radius ratio range. Internal hydrodynamic and surface tension forces are found to stabilize the cavitation bubble, while bubble stability has little relationship with the external hydrodynamic force. Inertia makes bubble breakup easily, however, the breakup time is only slightly changed when bubble growth speed reaches a certain value(50 m·s-1). In contrast, viscous force makes bubble hard to break. With the increasing initial bubble–droplet radius ratio, the bubble growth rate increases, the bubble breakup radius decreases, and the bubble breakup time becomes shorter.