We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity~ drive...We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity~ driven by a classical fieM. Our concrete calculation is made for the case of two atoms for the large-detuning interaction of the atoms with the cavity mode. The main advantage of our scheme is of eliminating the photon flutuation in the cavity mode during the gating. The corresponding analytical results will be helpful for experimental realization of speed geometric quantum logical gate in real cavities.展开更多
We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effect...We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effects, the more rigorous large detuning condition for neglecting the rapidly oscillating terms for the effective Plamiltonian should be △ 〉〉 N^1/2 g, instead of △ 〉〉 g usually used in the literature even in the case of multipartite systems, with N the number of microparticles involved, g the coupling strength, A the detuning. This result is significant since merely the satisfaction of the original condition will result in the invalidity of the effective Hamiltonian and the errors of the parameters associated with the detuning in the multipartite case.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10774042,10774163,and 11074070the Natural Science Foundation of Hunan Province under Grant No.09JJ3121the Key Project of Science and Technology of Hunan Province under Grant No.2010FJ2005
文摘We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity~ driven by a classical fieM. Our concrete calculation is made for the case of two atoms for the large-detuning interaction of the atoms with the cavity mode. The main advantage of our scheme is of eliminating the photon flutuation in the cavity mode during the gating. The corresponding analytical results will be helpful for experimental realization of speed geometric quantum logical gate in real cavities.
基金Supported by National Natural Science Foundation of China under Grant No.10774192
文摘We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effects, the more rigorous large detuning condition for neglecting the rapidly oscillating terms for the effective Plamiltonian should be △ 〉〉 N^1/2 g, instead of △ 〉〉 g usually used in the literature even in the case of multipartite systems, with N the number of microparticles involved, g the coupling strength, A the detuning. This result is significant since merely the satisfaction of the original condition will result in the invalidity of the effective Hamiltonian and the errors of the parameters associated with the detuning in the multipartite case.