A globla potential energy surface (PES) for the H+CH4←→H2+CH3 reaction has been constructed using the neural networks method based on 47783 high level ab initio geometry points. Extensive quasi-classical traject...A globla potential energy surface (PES) for the H+CH4←→H2+CH3 reaction has been constructed using the neural networks method based on 47783 high level ab initio geometry points. Extensive quasi-classical trajectories and quantum scattering calculations were carried out to check the convergence of the PES. This PES, fully converged with respect to the fitting procedure and the number of ab initio points, has a very small fitting error, and is much faster on evaluation than the modified Shepard interpolating PES, representing the best available PES for this benchmark polyatomic system.展开更多
Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carr...Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carried out,in order to predict statistical product branching ratios in dissociation of HOC2H3F at various internal energies.The most favorable reaction pathway leading to the major CH2CHO+HF products is as the following:OH+C2H3F→i2→TS14→i6→TS9→i3→TS3→CH2CHO+HF,where the rate-determining step is HF elimination from the CO bridging position via TS11,lying above the reactants by 3.8 kcal/mol.The CH2O+CH2F products can be formed by F atom migration from Cαto Cβposition via TS14,then H migration from O to Cαposition via TS16,and C-C breaking to form the products via TS5,which is 1.8 kcal/mol lower in energy than the reactants,and 4.0 kcal/mol lower than TS11.展开更多
AIM: To investigate the effectiveness of head compensatory postures to ensure safe oropharyngeal transit. METHODS: A total of 321 dysphagia patients were enrolled and assessed with videofluoromanometry (VFM). The dysp...AIM: To investigate the effectiveness of head compensatory postures to ensure safe oropharyngeal transit. METHODS: A total of 321 dysphagia patients were enrolled and assessed with videofluoromanometry (VFM). The dysphagia patients were classified as follows: safe transit; penetration without aspiration; aspiration before, during or after swallowing; multiple aspirations and no transit. The patients with aspiration or no transit were tested with VFM to determine whether compensatory postures could correct their swallowing disorder. RESULTS: VFM revealed penetration without aspiration in 71 patients (22.1%); aspiration before swallowing in 17 patients (5.3%); aspiration during swallowing in 32 patients (10%); aspiration after swallowing in 21 patients (6.5%); multiple aspirations in six patients (1.9%); no transit in five patients (1.6%); and safe transit in 169 patients (52.6%). Compensatory postures guaranteed a safe transit in 66/75 (88%) patients with aspiration or no transit. A chin-down posture achieved a safe swallow in 42/75 (56%) patients, a head-turned posture in 19/75 (25.3%) and a hyperextended head posture in 5/75 (6.7%). The compensatory postures were not effective in 9/75 (12%) cases. CONCLUSION: VFM allows the speech-language therapist to choose the most effective compensatory posture without a trial-and-error process and check the effectiveness of the posture.展开更多
The van der Waals (vdW) interaction is very important in fields of physics, biology and chemistry, and its role in reaction dynamics is an issue of great interest. In this review, we focus on the recent progresses in ...The van der Waals (vdW) interaction is very important in fields of physics, biology and chemistry, and its role in reaction dynamics is an issue of great interest. In this review, we focus on the recent progresses in the theoretical and experimental studies on the vdW interaction in bimolecular reactions. In particular, we review those studies that have advanced our understanding of how the vdW interaction can strongly influence the dynamics in both direct activated and complex-forming reactions, and further extend the discussion to the polyatomic reactions involving more atoms and those occurring at cold and ultracold temperatures. We indicate that an accurate description of the delicate vdW structure and long-range potential remains a challenge nowadays in either ab initio calculations or the fitting of the potential energy surfaces. We also present an explanation on the concept of vdW saddle proposed by us recently which may have general importance.展开更多
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.90921014), the Chinese Academy of Sciences, and the Ministry of Science and Technology of China (No.2013CB834601).
文摘A globla potential energy surface (PES) for the H+CH4←→H2+CH3 reaction has been constructed using the neural networks method based on 47783 high level ab initio geometry points. Extensive quasi-classical trajectories and quantum scattering calculations were carried out to check the convergence of the PES. This PES, fully converged with respect to the fitting procedure and the number of ab initio points, has a very small fitting error, and is much faster on evaluation than the modified Shepard interpolating PES, representing the best available PES for this benchmark polyatomic system.
基金supported by the National Natural Science Foundation of China (No.91641116).
文摘Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carried out,in order to predict statistical product branching ratios in dissociation of HOC2H3F at various internal energies.The most favorable reaction pathway leading to the major CH2CHO+HF products is as the following:OH+C2H3F→i2→TS14→i6→TS9→i3→TS3→CH2CHO+HF,where the rate-determining step is HF elimination from the CO bridging position via TS11,lying above the reactants by 3.8 kcal/mol.The CH2O+CH2F products can be formed by F atom migration from Cαto Cβposition via TS14,then H migration from O to Cαposition via TS16,and C-C breaking to form the products via TS5,which is 1.8 kcal/mol lower in energy than the reactants,and 4.0 kcal/mol lower than TS11.
文摘AIM: To investigate the effectiveness of head compensatory postures to ensure safe oropharyngeal transit. METHODS: A total of 321 dysphagia patients were enrolled and assessed with videofluoromanometry (VFM). The dysphagia patients were classified as follows: safe transit; penetration without aspiration; aspiration before, during or after swallowing; multiple aspirations and no transit. The patients with aspiration or no transit were tested with VFM to determine whether compensatory postures could correct their swallowing disorder. RESULTS: VFM revealed penetration without aspiration in 71 patients (22.1%); aspiration before swallowing in 17 patients (5.3%); aspiration during swallowing in 32 patients (10%); aspiration after swallowing in 21 patients (6.5%); multiple aspirations in six patients (1.9%); no transit in five patients (1.6%); and safe transit in 169 patients (52.6%). Compensatory postures guaranteed a safe transit in 66/75 (88%) patients with aspiration or no transit. A chin-down posture achieved a safe swallow in 42/75 (56%) patients, a head-turned posture in 19/75 (25.3%) and a hyperextended head posture in 5/75 (6.7%). The compensatory postures were not effective in 9/75 (12%) cases. CONCLUSION: VFM allows the speech-language therapist to choose the most effective compensatory posture without a trial-and-error process and check the effectiveness of the posture.
基金supported by the National Natural Science Foundation of China (No.21773251 and No.91741106)the Beijing National Laboratory for Molecular Sciences and Chinese Academy of Sciences
文摘The van der Waals (vdW) interaction is very important in fields of physics, biology and chemistry, and its role in reaction dynamics is an issue of great interest. In this review, we focus on the recent progresses in the theoretical and experimental studies on the vdW interaction in bimolecular reactions. In particular, we review those studies that have advanced our understanding of how the vdW interaction can strongly influence the dynamics in both direct activated and complex-forming reactions, and further extend the discussion to the polyatomic reactions involving more atoms and those occurring at cold and ultracold temperatures. We indicate that an accurate description of the delicate vdW structure and long-range potential remains a challenge nowadays in either ab initio calculations or the fitting of the potential energy surfaces. We also present an explanation on the concept of vdW saddle proposed by us recently which may have general importance.