期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向机器人轮椅交互控制的头姿估计改进方法 被引量:6
1
作者 徐国政 李威 +2 位作者 朱博 高翔 宋爱国 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第9期40-47,共8页
针对现有最近点迭代头姿算法存在迭代次数偏多且易陷于局部最优、随机森林头姿算法准确性和稳定性不高的问题,面向机器人轮椅交互控制,提出一种基于随机森林与最近点迭代算法融合的头姿估计改进方法。该方法首先对带有背景、噪声及孔洞... 针对现有最近点迭代头姿算法存在迭代次数偏多且易陷于局部最优、随机森林头姿算法准确性和稳定性不高的问题,面向机器人轮椅交互控制,提出一种基于随机森林与最近点迭代算法融合的头姿估计改进方法。该方法首先对带有背景、噪声及孔洞的原始点云数据进行预处理,得到头部有效三维点云;其次,在分析传统最近点迭代算法基础上,研究头姿估计过程中的权重序列计算方法,提高了系统实时性;最后,基于随机森林算法估计头部粗略姿态,并将其作为最近点迭代算法初值,进一步迭代头姿实时点云,精炼实时头姿。实验结果表明,改进后的头姿估计方法较传统最近点迭代算法减少了迭代次数且避免了陷于局部最优,准确性及稳定性优于传统随机森林算法。 展开更多
关键词 机器人轮椅 头姿估计 最近点迭代 随机森林
下载PDF
基于改进头姿估计方法的机器人轮椅交互控制 被引量:3
2
作者 徐国政 巩伟杰 +3 位作者 朱博 高翔 宋爱国 徐宝国 《机器人》 EI CSCD 北大核心 2018年第6期878-886,共9页
针对现有迭代最近点(ICP)头姿估计算法存在迭代次数偏多且易陷于局部最优、而随机森林(RF)头姿估计算法准确性和稳定性不高的问题,提出一种新的头姿估计改进方法,并基于该改进方法构建机器人轮椅实时交互控制接口.首先,分析现有迭代最... 针对现有迭代最近点(ICP)头姿估计算法存在迭代次数偏多且易陷于局部最优、而随机森林(RF)头姿估计算法准确性和稳定性不高的问题,提出一种新的头姿估计改进方法,并基于该改进方法构建机器人轮椅实时交互控制接口.首先,分析现有迭代最近点头姿算法与随机森林头姿算法在准确性、实时性及稳定性方面存在的问题,并提出一种新的基于随机森林与迭代最近点算法融合的头姿估计改进方法;其次,为实现头姿估计到机器人轮椅交互控制的无缝连接,建立基于传统机器人轮椅操纵杆的头部姿态运动空间映射;最后,在基于标准头姿数据库分析改进头姿估计方法性能的基础上,构建机器人轮椅实验平台并规划运动轨迹,以进一步验证基于改进头姿估计方法的人机交互接口在机器人轮椅实时控制方面的有效性.实验结果表明,改进后的头姿估计方法较传统迭代最近点算法减少了迭代次数且避免了陷于局部最优,在仅增加少量运算时间的基础上,其准确性和稳定性都优于传统随机森林算法;同时,基于改进头姿估计方法的人机交互接口亦能实时平稳地控制机器人轮椅沿既定的轨迹运动. 展开更多
关键词 机器人轮椅 头姿估计 人机交互 实时控制
原文传递
Multiclass classification based on a deep convolutional network for head pose estimation 被引量:3
3
作者 Ying CAI Meng-long YANG Jun LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第11期930-939,共10页
Head pose estimation has been considered an important and challenging task in computer vision. In this paper we propose a novel method to estimate head pose based on a deep convolutional neural network (DCNN) for 2D... Head pose estimation has been considered an important and challenging task in computer vision. In this paper we propose a novel method to estimate head pose based on a deep convolutional neural network (DCNN) for 2D face images. We design an effective and simple method to roughly crop the face from the input image, maintaining the individual-relative facial features ratio. The method can be used in various poses. Then two convolutional neural networks are set up to train the head pose classifier and then compared with each other. The simpler one has six layers. It performs well on seven yaw poses but is somewhat unsatisfactory when mixed in two pitch poses. The other has eight layers and more pixels in input layers. It has better performance on more poses and more training samples. Before training the network, two reasonable strategies including shift and zoom are executed to prepare training samples. Finally, feature extraction filters are optimized together with the weight of the classification component through training, to minimize the classification error. Our method has been evaluated on the CAS-PEAL-R1, CMU PIE, and CUBIC FacePix databases. It has better performance than state-of-the-art methods for head pose estimation. 展开更多
关键词 Head pose estimation Deep convolutional neural network Multiclass classification
原文传递
Unseen head pose prediction using dense multivariate label distribution 被引量:1
4
作者 Gao-li SANG Hu CHEN +1 位作者 Ge HUANG Qi-jun ZHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期516-526,共11页
Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previous... Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previously seen head poses). To predict head poses that are not seen in the training data, some regression-based methods have been proposed. However, they focus on estimating continuous head pose angles, and thus do not systematically evaluate the performance on predicting unseen head poses. In this paper, we use a dense multivariate label distribution(MLD) to represent the pose angle of a face image. By incorporating both seen and unseen pose angles into MLD, the head pose predictor can estimate unseen head poses with an accuracy comparable to that of estimating seen head poses. On the Pointing'04 database, the mean absolute errors of results for yaw and pitch are 4.01?and 2.13?, respectively. In addition, experiments on the CAS-PEAL and CMU Multi-PIE databases show that the proposed dense MLD-based head pose estimation method can obtain the state-of-the-art performance when compared to some existing methods. 展开更多
关键词 Head pose estimation Dense multivariate label distribution Sampling intervals Inconsistent labels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部