Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods...Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods: The finite element method (FEM) was used to calculate,electromagnetic field and SAR distribution. Two different structure applicators were simulated. Theone is simple coaxial antenna, which has been successfully used in clinic treating bone tumors inTangdu hospital of the Forth Military Medical University several years. It was formed by a coaxialcable peeled off the out copper at end. The other applicator was coaxial- slot antenna, which waswidely used in microwave hyperthermia. The applicator inserted into the cylindrical bone withdifferent depths, and worked at the frequency of 2 450 MHz. Results: The electric field and SARgenerated by the simple coaxial applicator were mainly concentrated out the tissues, and were notuniform in the tissues, while the coaxial- slot applicator well transmits the electric field and SARinto the tissues, and can easily treat different position by adjusting the slat position.Conclusion: The results calculated by EFM, were well accordant with the experimental and clinicalresulls, and will be important for improving the clinical effects of microwave hyperthermia.展开更多
It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of pre...It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of preforming combined finish forming process is developed. The preforming process is characterized by flaring combined upsetting for left fitting body which is like a flange, and is characterized by tube axial compressive process under die constraint for right fitting body which is like a double-wall pipe. The finite element simulations of the processes are carried out by software package DEFORM, and the results indicate that: 1) left or right fitting body can be formed by a two-step forming process without folding and under-filling defects; 2) by using two-step forming, strain and stress in left fitting body are larger than those in right fitting body, and deformation in right fitting body is more homogenous than the deformation in left fitting body; 3) two or more preforming steps may be needed for left fitting body considering the distributions of strain and stress.展开更多
文摘Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods: The finite element method (FEM) was used to calculate,electromagnetic field and SAR distribution. Two different structure applicators were simulated. Theone is simple coaxial antenna, which has been successfully used in clinic treating bone tumors inTangdu hospital of the Forth Military Medical University several years. It was formed by a coaxialcable peeled off the out copper at end. The other applicator was coaxial- slot antenna, which waswidely used in microwave hyperthermia. The applicator inserted into the cylindrical bone withdifferent depths, and worked at the frequency of 2 450 MHz. Results: The electric field and SARgenerated by the simple coaxial applicator were mainly concentrated out the tissues, and were notuniform in the tissues, while the coaxial- slot applicator well transmits the electric field and SARinto the tissues, and can easily treat different position by adjusting the slat position.Conclusion: The results calculated by EFM, were well accordant with the experimental and clinicalresulls, and will be important for improving the clinical effects of microwave hyperthermia.
基金Project(51305334)supported by the National Natural Science Foundation of ChinaProject(51335009)supported by the National Natural Science Foundation of China for Key Program+1 种基金Project(CXY1442(4))supported by the Science and Technology Planning Project of Xi’an,ChinaProject supported by Shaanxi Province Postdoctoral Science Research Program of China
文摘It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of preforming combined finish forming process is developed. The preforming process is characterized by flaring combined upsetting for left fitting body which is like a flange, and is characterized by tube axial compressive process under die constraint for right fitting body which is like a double-wall pipe. The finite element simulations of the processes are carried out by software package DEFORM, and the results indicate that: 1) left or right fitting body can be formed by a two-step forming process without folding and under-filling defects; 2) by using two-step forming, strain and stress in left fitting body are larger than those in right fitting body, and deformation in right fitting body is more homogenous than the deformation in left fitting body; 3) two or more preforming steps may be needed for left fitting body considering the distributions of strain and stress.