期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
基于分区搜索和强化学习的多模态多目标头脑风暴优化算法
1
作者 李鑫 余墨多 +1 位作者 姜庆超 范勤勤 《计算机应用研究》 CSCD 北大核心 2024年第8期2374-2383,共10页
维持种群多样性和提高算法搜索效率是多模态多目标优化亟需解决的两大问题。为解决以上问题,提出了一种基于分区搜索和强化学习的多模态多目标头脑风暴优化算法(MMBSO-ZSRL)。在MMBSO-ZSRL中,首先将决策空间分解为多个子空间以降低搜索... 维持种群多样性和提高算法搜索效率是多模态多目标优化亟需解决的两大问题。为解决以上问题,提出了一种基于分区搜索和强化学习的多模态多目标头脑风暴优化算法(MMBSO-ZSRL)。在MMBSO-ZSRL中,首先将决策空间分解为多个子空间以降低搜索难度和维持种群多样性;然后,使用SARSA(state-action-reward-state-action)算法来平衡头脑风暴算法的全局探索和局部开发能力;并使用特殊拥挤距离来挑选个体来指导种群进化。为了验证所提算法的性能,选取六种先进的多模态多目标优化算法来进行比较,并选取IEEE CEC2019多模态多目标问题基准测试集来对所有比较算法的性能进行测试。实验结果表明,MMBSO-ZSRL的整体性能要显著优于其他六种比较算法。MMBSO-ZSRL不仅可以找到多样性和逼近性更好的帕累托前沿,而且可以在决策空间找到更多的帕累托最优解。 展开更多
关键词 多模态多目标优化 头脑风暴优化算法 强化学习 SARSA算法 分区搜索
下载PDF
人工智能——骨科新的“头脑风暴”
2
作者 姜仲博 郭艳波 +4 位作者 吕文学 岳亮 王德恒 于宁 蔡余力 《实用骨科杂志》 2024年第3期286-286,288,共2页
人工智能(artificial intelligence,AI)是通过机器学习、人工神经网络(artificial neural network,ANN)等计算机算法研究人类大脑智能,模拟人脑活动,执行达到或超过人类表现的任务,最终实现计算机自主智能化活动[1]。“人工智能”概念由... 人工智能(artificial intelligence,AI)是通过机器学习、人工神经网络(artificial neural network,ANN)等计算机算法研究人类大脑智能,模拟人脑活动,执行达到或超过人类表现的任务,最终实现计算机自主智能化活动[1]。“人工智能”概念由John McCarthy于1956年首次提出[2],目前被广泛应用于药物鉴定、疾病诊断及手术规划等多个方面。人工智能通过深度学习技术构建“用户友好型”诊断网络,基于公共AI平台对疾病影像学资料进行分析,建立疾病诊断模型,提高脊柱骨折、肋骨骨折、骨关节炎等骨科常见疾病的诊出率及分期精准度,并对相关手术规划提供帮助[3-5]。 展开更多
关键词 脊柱骨折 头脑风暴 肋骨骨折 骨关节炎 人工智能 计算机算法 手术规划 人类大脑
下载PDF
两阶段BSO-SA算法求解带单边软时间窗的多车型VRP问题
3
作者 梁学恒 杨家其 向子权 《武汉理工大学学报(交通科学与工程版)》 2024年第1期19-24,共6页
在标准头脑风暴算法(BSO)的基础上,提出了一种新的两阶段头脑风暴退火算法(BSO-SA).根据多车型问题,设计了基于贪婪算法的编解码形式.使用K-medoids聚类代替BSO算法中的Kmeans聚类,以提高算法聚类性能.同时,采用了四种局部搜索算子,提... 在标准头脑风暴算法(BSO)的基础上,提出了一种新的两阶段头脑风暴退火算法(BSO-SA).根据多车型问题,设计了基于贪婪算法的编解码形式.使用K-medoids聚类代替BSO算法中的Kmeans聚类,以提高算法聚类性能.同时,采用了四种局部搜索算子,提高新解的产生效率.两阶段求解思路,解决了BSO算法容易陷入局部最优值和SA算法收敛较慢的问题.使用三个不同规模的算例用于验证,并与模拟退火、遗传算法、头脑风暴算法进行对比,结果验证了该算法的有效性. 展开更多
关键词 车辆路径优化 头脑风暴算法 两阶段 单边软时间窗
下载PDF
融合头脑风暴和注意力机制的改进蚁群路径规划算法研究 被引量:1
4
作者 陈嘉航 李媛媛 《电光与控制》 CSCD 北大核心 2023年第4期1-5,共5页
蚁群算法是一种智能优化算法,具有鲁棒性强、反馈信息精准、分布式计算能力强等优点,被广泛应用于移动机器人的路径规划。针对原算法存在收敛速度慢、易陷入局部最优等问题,提出了一种改进蚁群路径规划算法。首先,融合头脑风暴思想对解... 蚁群算法是一种智能优化算法,具有鲁棒性强、反馈信息精准、分布式计算能力强等优点,被广泛应用于移动机器人的路径规划。针对原算法存在收敛速度慢、易陷入局部最优等问题,提出了一种改进蚁群路径规划算法。首先,融合头脑风暴思想对解集进行更新变异,在加快收敛的同时保证算法的多样性。其次,利用局部路径注意力机制提取较好的路径段,提高寻优效率,且在信息素注意力机制中加入了自适应t分布,避免算法陷入局部最优。新的信息素更新方式可以促进算法的全局搜索,并且保障算法的收敛速度。最后,在Matlab软件中进行了静态环境下的仿真实验,验证了该算法的有效性和可行性。 展开更多
关键词 蚁群算法 路径规划 头脑风暴 注意力机制 自适应t分布
下载PDF
面向非线性方程组的学习型头脑风暴优化算法 被引量:2
5
作者 程适 王雪萍 +1 位作者 刘悦 史玉回 《计算机工程》 CAS CSCD 北大核心 2023年第7期47-54,共8页
求解非线性方程组的难点是在一次运行中获取问题的多个根,常规求解方法难以同时满足解的精度和解的数量要求。提出一种基于知识学习的目标空间头脑风暴优化(LBSOOS)算法,通过将非线性方程组问题建模为多模态优化问题进行求解,在求解过... 求解非线性方程组的难点是在一次运行中获取问题的多个根,常规求解方法难以同时满足解的精度和解的数量要求。提出一种基于知识学习的目标空间头脑风暴优化(LBSOOS)算法,通过将非线性方程组问题建模为多模态优化问题进行求解,在求解过程融合算法的求解特性和待求解问题的领域知识,采用求解问题学习和求解算法学习两种学习方式解决求解精度和解集合多样性的冲突。从算法层面改进算子的学习方式,将随机解的扰动算子替换为最差解的解间学习,提高算法的整体寻优能力。通过对多模态问题进行分析,在算法中增加额外的档案集,保证输出解集合的多样性。将LBSOOS算法与5种群体智能优化算法在7个非线性方程组问题上进行性能测试,实验结果表明,LBSOOS算法在保证求解精度的条件下,在绝大多数测试问题上的求解多样性优于BSO、BSOOS、PIO等对比算法。 展开更多
关键词 群体智能 头脑风暴优化算法 探索与利用 非线性方程组 多模态优化
下载PDF
基于讨论机制的头脑风暴优化算法 被引量:26
6
作者 杨玉婷 史玉回 夏顺仁 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第10期1705-1711,1746,共8页
为了克服头脑风暴优化(BSO)算法易陷入局部最优导致早熟收敛的问题,提出新型的基于讨论机制的头脑风暴优化(DMBSO)算法.该算法运用组内讨论和组间讨论这一新机制取代BSO算法中的个体更新过程,分别控制算法的全局搜索和局部搜索能力.通... 为了克服头脑风暴优化(BSO)算法易陷入局部最优导致早熟收敛的问题,提出新型的基于讨论机制的头脑风暴优化(DMBSO)算法.该算法运用组内讨论和组间讨论这一新机制取代BSO算法中的个体更新过程,分别控制算法的全局搜索和局部搜索能力.通过线性递减和线性递增方式调整组间讨论和组内讨论次数,使算法搜索初期加强全局搜索能力,搜索后期加强局部细致搜索能力,有效地防止早熟问题.对6个经典测试函数(BFs)的10维、20维、30维问题分别进行测试来评估DMBSO的效果.结果表明,DMBSO算法与BSO算法和经典的粒子群(PSO)算法相比,可以有效地避免陷入局部最优,稳定地找到更好的最优值,而且随着问题维度的增加,DMBSO表现出更强的鲁棒性. 展开更多
关键词 群体智能优化算法 头脑风暴优化算法 讨论机制
下载PDF
基于头脑风暴优化算法的多机器人气味源定位 被引量:11
7
作者 梁志刚 顾军华 董永峰 《计算机应用》 CSCD 北大核心 2017年第12期3614-3619,共6页
针对现有室内湍流环境下多机器人气味源搜索算法存在历史浓度信息利用率不高、缺少调节全局与局部搜索的机制等问题,提出头脑风暴优化(BSO)算法与逆风搜索结合的多机器人协同搜索算法。首先,将机器人已搜索位置初始化为个体,以机器人位... 针对现有室内湍流环境下多机器人气味源搜索算法存在历史浓度信息利用率不高、缺少调节全局与局部搜索的机制等问题,提出头脑风暴优化(BSO)算法与逆风搜索结合的多机器人协同搜索算法。首先,将机器人已搜索位置初始化为个体,以机器人位置为中心聚类,有效利用了历史信息的指引作用;然后,将逆风搜索作为个体变异操作,动态调节选中一个类中个体或两个类中个体融合生成新个体的数量,有效调节了全局和局部搜索方式;最后,根据浓度和持久性两个指标对气味源进行确认。在有障碍和无障碍两个环境中将所提算法与三种群体智能多机器人气味源定位算法进行定位对比仿真实验,实验结果表明,所提算法的平均搜索时间减少33%以上,且定位准确率达到100%。该算法能够有效调节机器人全局和局部搜索关系,快速准确定位气味源。 展开更多
关键词 气味源定位 湍流环境 多机器人 头脑风暴优化算法 逆风搜索
下载PDF
基于改进头脑风暴优化算法的隐马尔可夫模型运动识别 被引量:5
8
作者 杨玉婷 段丁娜 +1 位作者 张欢 夏顺仁 《航天医学与医学工程》 CAS CSCD 北大核心 2015年第6期403-407,共5页
目的克服隐马尔可夫模型(hidden Markov model,HMM)训练过程中易陷入局部最优问题,提高基于HMM的人体运动识别准确率。方法提出一种基于带差分步长的头脑风暴优化(brain storm optimization with differential step,BSO-DS)算法来改进HM... 目的克服隐马尔可夫模型(hidden Markov model,HMM)训练过程中易陷入局部最优问题,提高基于HMM的人体运动识别准确率。方法提出一种基于带差分步长的头脑风暴优化(brain storm optimization with differential step,BSO-DS)算法来改进HMM训练过程的方法,进而利用该方法对实际人体运动视频进行运动识别,并将结果与经典的基于Baum-Welch(BW)算法的HMM识别结果进行比较分析。结果本文所提方法在解决HMM训练问题时,可以得到更大的log-likelihood值,所得到的HMM可以更好地表达训练数据,其运动识别准确率达到92.2%,较BW算法有较大提升。结论 BSO-DS算法可以有效搜索全局最优,更好地解决HMM的训练问题,同时提升了运动识别准确率,为人体运动分析提供了新思路。 展开更多
关键词 运动识别 头脑风暴 优化算法 隐马尔可夫模型训练
下载PDF
目标空间聚类的差分头脑风暴优化算法 被引量:7
9
作者 吴亚丽 付玉龙 +1 位作者 王鑫睿 刘庆 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第12期1583-1593,共11页
作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference br... 作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性. 展开更多
关键词 头脑风暴算法 聚类 差分变异 目标空间
下载PDF
改进头脑风暴优化算法与Powell算法结合的医学图像配准 被引量:8
10
作者 梁志刚 顾军华 《计算机应用》 CSCD 北大核心 2018年第9期2683-2688,共6页
针对现有医学图像配准算法精度较差、易陷入局部极值和收敛速度慢的问题,结合多分辨率分析,提出改进头脑风暴优化(MBSO)算法与Powell算法结合的图像配准算法。MBSO算法通过改变个体生成方式调节参与局部和全局搜索的个体比例,应用可变... 针对现有医学图像配准算法精度较差、易陷入局部极值和收敛速度慢的问题,结合多分辨率分析,提出改进头脑风暴优化(MBSO)算法与Powell算法结合的图像配准算法。MBSO算法通过改变个体生成方式调节参与局部和全局搜索的个体比例,应用可变步长加强搜索能力,达到跳出局部最优和加速收敛的目的。首先,在低分辨率层利用MBSO算法进行全局搜索;然后,将搜索结果作为Powell算法的初始点在高分辨率层进一步搜索;最后,在原始图像层利用Powell算法搜索并定位全局最优值。与粒子群优化(PSO)算法、蚁群优化(ACO)算法、遗传算法(GA)与Powell算法结合算法相比,所提算法平均均方根误差分别减小了20.89%、30.46%和18.54%,平均配准时间分别缩短了17.86%、27.05%和26.60%,并且达到了100%的成功率。实验结果表明,所提算法具有很强的鲁棒性,能够快速、准确完成医学图像配准任务。 展开更多
关键词 医学图像配准 头脑风暴优化算法 POWELL算法 归一化互信息 多分辨率
下载PDF
高维多目标头脑风暴优化算法 被引量:6
11
作者 吴亚丽 付玉龙 +1 位作者 李国婷 张亚崇 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第1期193-204,共12页
多目标优化的两个核心指标是收敛性和多样性,而对二者加以优化和权衡是多目标进化算法的关键.头脑风暴优化算法作为一种新型的群体智能优化算法,一经提出便引起了众多研究者的关注.本文在对现有的多目标头脑风暴优化算法研究的基础上,... 多目标优化的两个核心指标是收敛性和多样性,而对二者加以优化和权衡是多目标进化算法的关键.头脑风暴优化算法作为一种新型的群体智能优化算法,一经提出便引起了众多研究者的关注.本文在对现有的多目标头脑风暴优化算法研究的基础上,通过对决策变量进行分析,围绕收敛性和多样性分别进行优化,在对收敛性优化时通过分解策略增加选择压力,而在对多样性优化时以参考点更新种群增加多样性,最终扩展并提出了高维多目标头脑风暴优化算法.此外,本文提出一种以角点为聚类中心的自适应聚类方式,明确个体的导向,提高种群的扩展性.与现有的几种效果较好的多目标进化算法进行比较,大量的仿真结果表明了本文的算法具有优秀的性能. 展开更多
关键词 头脑风暴优化算法 聚类 决策变量聚类 分解策略 参考点
下载PDF
头脑风暴粒子群移动机器人路径规划
12
作者 宋宇 马鹏程 程超 《长春工业大学学报》 CAS 2023年第1期38-44,共7页
利用生物仿真的头脑风暴(Brain Storm Optimization,BSO)的聚类融合算法,提高粒子群算法的搜索能力。在考虑安全距离的条件下,缩短了路径长度,降低了算法的时间损失。进行了头脑风暴粒子群算法二维环境下的模拟仿真。
关键词 移动机器人 路径规划 粒子群 头脑风暴 算法融合
下载PDF
基于Spark的并行化头脑风暴优化算法及复杂多峰函数优化 被引量:1
13
作者 杨广明 张涛 +2 位作者 TRUONG Thanh-tung 王瑞 马连博 《计算机工程与科学》 CSCD 北大核心 2019年第3期393-399,共7页
头脑风暴优化BSO算法是一种新型的群体智能优化算法,启发于众人集思广益求解问题的模式,适合求解复杂多峰函数优化问题。但是,BSO求解多峰极值时需进行重复的迭代运算,面对大规模数据集时会出现计算效率与求解精度过低的现象。为解决上... 头脑风暴优化BSO算法是一种新型的群体智能优化算法,启发于众人集思广益求解问题的模式,适合求解复杂多峰函数优化问题。但是,BSO求解多峰极值时需进行重复的迭代运算,面对大规模数据集时会出现计算效率与求解精度过低的现象。为解决上述问题,设计并实现了一种基于Spark的并行化头脑风暴优化算法,通过将BSO算法中计算复杂度最高的聚类与新解产生过程并行化,以提高算法的加速比与计算效率。特别地,基于并行化思想,将种群划分为多个子群进行协同演化,每个子群独立产生新解来保持种群多样性,提高算法的收敛速度。最后,利用并行化BSO算法求解多峰函数。实验表明,在并行节点的总核心数为10的情况下,并行化BSO算法计算时间节省一半,计算精度和串行BSO算法基本持平,收敛速度明显提高,实验结果说明了并行化BSO的有效性。 展开更多
关键词 头脑风暴优化算法 SPARK 多峰函数 群体智能
下载PDF
基于头脑风暴优化算法与BP神经网络的海水水质评价模型研究 被引量:12
14
作者 李海涛 邵泽东 《应用海洋学学报》 CSCD 北大核心 2020年第1期57-62,共6页
针对基于传统BP神经网络的海水水质评价模型存在易陷入局部极小等问题,提出了一种新的利用头脑风暴优化算法(BSO)优化BP神经网络的海水水质评价模型(BSO-BP)。该模型引入具有全局寻优特点的头脑风暴优化算法,用于模拟人类提出创造性思... 针对基于传统BP神经网络的海水水质评价模型存在易陷入局部极小等问题,提出了一种新的利用头脑风暴优化算法(BSO)优化BP神经网络的海水水质评价模型(BSO-BP)。该模型引入具有全局寻优特点的头脑风暴优化算法,用于模拟人类提出创造性思维解决问题的过程,具有强大的全局搜索和局部搜索的能力,同时利用BP神经网络所具有良好的非线性映射能力、学习适应能力和容错性,最大程度上考虑到海洋水质评价因素的非线性和非平稳的关系,得到BP神经网络的各层权值、阈值的最优解,使得海水水质评价结果准确合理。并以胶州湾海域的12个监测站位的监测数据作为评价样本进行水质评价,实验结果表明该评价模型能够克服局部极小问题,评价结果准确性较高,并具有一定的实用性。 展开更多
关键词 海洋环境科学 头脑风暴优化算法 BP神经网络 海水水质评价
下载PDF
差分头脑风暴算法及其在频谱感知中的应用 被引量:1
15
作者 刁鸣 王小兰 高洪元 《应用科技》 CAS 2016年第5期14-19,23,共7页
为了有效求解连续优化问题,基于差分进化算法和头脑风暴优化算法的智能演进原理,提出一种新的全局搜索算法,即差分头脑风暴算法。通过4个经典的基准函数对该算法进行测试,并将该算法应用于频谱感知这个认知无线电领域的热点问题,提出基... 为了有效求解连续优化问题,基于差分进化算法和头脑风暴优化算法的智能演进原理,提出一种新的全局搜索算法,即差分头脑风暴算法。通过4个经典的基准函数对该算法进行测试,并将该算法应用于频谱感知这个认知无线电领域的热点问题,提出基于差分头脑风暴的协作式频谱感知算法。使用差分头脑风暴算法、头脑风暴算法、混合蛙跳算法以及粒子群算法进行仿真对比。仿真结果表明,所提出的算法基于设计的创新方程,具有很强的全局收敛能力,能够显著改进头脑风暴算法的性能;基于差分头脑风暴的频谱感知检测概率比其他算法都高,且收敛速度比头脑风暴算法提高至少3倍。 展开更多
关键词 头脑风暴算法 差分进化算法 智能优化 协作频谱感知 基准函数
下载PDF
头脑风暴算法优化的乳腺MR图像软子空间聚类算法 被引量:1
16
作者 范虹 史肖敏 姚若侠 《计算机科学与探索》 CSCD 北大核心 2020年第8期1348-1357,共10页
传统的软子空间聚类算法在对信息量大、强度不均匀、边界模糊的乳腺MR图像进行分割时,易受初始聚类中心和噪声数据的影响,导致算法陷入局部最优,造成误分类。针对该问题,提出一种头脑风暴算法优化的乳腺MR图像软子空间聚类算法。算法首... 传统的软子空间聚类算法在对信息量大、强度不均匀、边界模糊的乳腺MR图像进行分割时,易受初始聚类中心和噪声数据的影响,导致算法陷入局部最优,造成误分类。针对该问题,提出一种头脑风暴算法优化的乳腺MR图像软子空间聚类算法。算法首先引入一个放松界约束与广义噪声聚类结合的目标函数,并用隶属度计算方法来寻找簇类所在子空间;然后在子空间聚类时用给定指数来适配聚类任务;最后在聚类过程中运用头脑风暴算法进行优化,有效地平衡局部搜索与全局搜索,从而弥补现有算法易陷入局部最优的不足。对比算法与该算法在Berkeley图像数据集上的实验结果表明该算法具有较高的精度,临床乳腺MR图像聚类的实验结果验证了所提算法的鲁棒性。 展开更多
关键词 乳腺MR图像 头脑风暴算法 软子空间聚类算法 图像聚类
下载PDF
基于头脑风暴算法的FastSLAM 2.0算法 被引量:1
17
作者 朱代先 王明博 +1 位作者 刘树林 郭苹 《计算机应用研究》 CSCD 北大核心 2021年第12期3629-3633,共5页
针对FastSLAM 2.0算法粒子权值退化与粒子多样性丧失导致机器人定位建图精度下降的问题,提出了基于头脑风暴算法改进FastSLAM 2.0算法。通过头脑风暴算法替换FastSLAM 2.0算法重采样过程,首先将重要性采样后的粒子权值作为头脑风暴算法... 针对FastSLAM 2.0算法粒子权值退化与粒子多样性丧失导致机器人定位建图精度下降的问题,提出了基于头脑风暴算法改进FastSLAM 2.0算法。通过头脑风暴算法替换FastSLAM 2.0算法重采样过程,首先将重要性采样后的粒子权值作为头脑风暴算法中个体评判的适度值,根据适度值大小差异完成K-means聚类操作;其次对聚类后的集合进行变异操作,并取消头脑风暴算法中个体选择操作,从而实现改进头脑风暴算法替代FastSLAM 2.0算法重采样过程,缓解粒子的贫化现象,增加粒子多样性,最终实现对机器人定位建图精度的提升。在机器人定位建图实验中,对比经典FastSLAM 2.0算法和基于遗传算法改进FastSLAM 2.0算法,提出的算法定位精度最高,相较于经典FastSLAM 2.0算法,提出算法定位精度提升了63%,稳定性提升了55%。 展开更多
关键词 机器人 同时定位与建图 FastSLAM 2.0 头脑风暴算法 粒子权值退化 粒子贫化 重采样
下载PDF
一种改进的头脑风暴优化算法 被引量:1
18
作者 梁志刚 顾军华 侯向丹 《河北工业大学学报》 CAS 2018年第6期56-62,共7页
针对头脑风暴优化(BSO)算法精度较差、后期收敛速度慢的问题,提出了一种改进的BSO (MBSO)算法. MBSO算法通过对种群分组策略概率参数的调节,改变个体生成方式调节参与全局和局部搜索的个体比例,算法前期加强全局搜索后期加强局部搜索,... 针对头脑风暴优化(BSO)算法精度较差、后期收敛速度慢的问题,提出了一种改进的BSO (MBSO)算法. MBSO算法通过对种群分组策略概率参数的调节,改变个体生成方式调节参与全局和局部搜索的个体比例,算法前期加强全局搜索后期加强局部搜索,有效避免陷入局部最优.同时MBSO算法根据搜索所处不同阶段采用可变最大步长的策略加速算法收敛并提高了优化精度.采用6个标准测试函数对MBSO算法搜索性能进行了测试,与原始BSO算法、粒子群优化(PSO)算法和差分进化(DE)算法结果进行比较实验.仿真结果表明,MBSO算法可以有效地避免陷入局部最优,稳定地找到更好的最优值,收敛速度显著加快. MBSO算法在优化问题中表现出了优异的性能和巨大的潜力. 展开更多
关键词 群体智能 头脑风暴过程 头脑风暴优化算法 分组策略 可变最大步长
下载PDF
头脑风暴算法在多阈值Otsu分割法中的应用 被引量:1
19
作者 陈宏伟 鄢来仪 叶志伟 《湖北工业大学学报》 2017年第5期59-62,共4页
利用头脑风暴算法对Otsu多维阈值分割适应度函数进行优化求解。与其他经典智能算法进行对比,结果表明,该方法应用在Otsu多阈值分割中快速有效,获得了较好的分割效果,是一种可行的图像分割方法。
关键词 图像分割 头脑风暴算法 最大类间方差法 多阈值
下载PDF
基于头脑风暴算法的多处理机组合生产批量调度问题 被引量:4
20
作者 王全武 徐震浩 顾幸生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第5期685-695,共11页
在生产调度领域中,受生产工艺等诸多因素的影响,往往每个生产过程都需要多台机器同时参与加工。同时,待加工的工件数量较多,需要将每种类型的工件进行批量处理,以缩短生产周期。本文在作业车间环境下,根据每个加工过程所参与机器的负荷... 在生产调度领域中,受生产工艺等诸多因素的影响,往往每个生产过程都需要多台机器同时参与加工。同时,待加工的工件数量较多,需要将每种类型的工件进行批量处理,以缩短生产周期。本文在作业车间环境下,根据每个加工过程所参与机器的负荷,采用可变分批方案,提出了非混排多处理机组合生产批量调度模型,并结合头脑风暴优化算法,求解出最短加工时间。提出了一种改进的头脑风暴优化算法,引入贪婪思想与动态讨论机制,讨论次数随着算法的迭代而自适应变化,将全局搜索与局部搜索相结合,加强了算法的搜索能力。实验结果表明,改进的头脑风暴优化算法与基本的头脑风暴优化算法相比,求解效率更高,收敛速度更快。 展开更多
关键词 多处理机组合生产 作业车间 批量调度 头脑风暴优化算法(bso) 讨论机制
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部