By suitably choosing the normalization factors we introduce the even- and odd-negative binomial states. In some limit cases they approach the even- and odd-coherent states, respectively. We also derive a new eigenvect...By suitably choosing the normalization factors we introduce the even- and odd-negative binomial states. In some limit cases they approach the even- and odd-coherent states, respectively. We also derive a new eigenvector equation that the negative binomial state satishes as a nonlinear coherent state.展开更多
Generating entangled states efficiently is a hot topic in the area of quantum information science.With the approach presented in this paper,a general parity gate could be realized and a wide range of entangled states,...Generating entangled states efficiently is a hot topic in the area of quantum information science.With the approach presented in this paper,a general parity gate could be realized and a wide range of entangled states,including GHZ state,W state,Dicke state,arbitrary graph state and locally maximally entanglable states,can be generated flexibly.The generation of GHZ state,W state,and Dicke state is probabilistic but heralded and the total success probability is unit.In addition,the arbitrary graph state and locally maximally entanglable states generation is deterministic,flexible,and highly efficient.Especially,with the"simultaneous"generation pattern,the complexity of the graph state generation and locally maximally entanglable states generation could be reduced greatly,providing a more efficient and feasible way to generate the entangled states.展开更多
We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on t...We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on the linear optical elements,say the partial parity check gate and the second protocol uses the quantum nondemolition measurement to construct the complete parity check gate.Both protocols can achieve the concentration task.These protocols have several advantages.First,they can obtain a maximally entangled W state only with the help of some single photons,which greatly reduces the number of entanglement resources.Second,in the first protocol,only linear optical elements are required,which is feasible with current techniques.Third,the second protocol can be repeated to perform the concentration step and obtain a higher success probability.All these advantages make it quite useful in current quantum communication and computation applications.展开更多
We propose new methods to construct universal Greenberger-Horne-Zeilinger(GHZ)-state analyzers without destroying the qubits by using two-qubit parity gates. The idea can be applied to any physical systems where the t...We propose new methods to construct universal Greenberger-Horne-Zeilinger(GHZ)-state analyzers without destroying the qubits by using two-qubit parity gates. The idea can be applied to any physical systems where the two-qubit parity gate can be realized.We also investigate the feasibility of nondestructively distinguishing the GHZ-basis states for photonic qubits with such an idea.The nondestructive GHZ-state analyzers can act as generators of GHZ entangled states and are expected to find useful applications for resource-saving quantum information processing.展开更多
文摘By suitably choosing the normalization factors we introduce the even- and odd-negative binomial states. In some limit cases they approach the even- and odd-coherent states, respectively. We also derive a new eigenvector equation that the negative binomial state satishes as a nonlinear coherent state.
基金supported by the National Natural Science Foundation of China(Grant No.11005040)the Program for New Century Excellent Talents in Fujian Province University(Grant No.2012FJ-NCET-ZR04)+1 种基金the Natural Science Foundation of Fujian Province of China(Grant No.2014J01015)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(Grant No.ZQN-PY113)
文摘Generating entangled states efficiently is a hot topic in the area of quantum information science.With the approach presented in this paper,a general parity gate could be realized and a wide range of entangled states,including GHZ state,W state,Dicke state,arbitrary graph state and locally maximally entanglable states,can be generated flexibly.The generation of GHZ state,W state,and Dicke state is probabilistic but heralded and the total success probability is unit.In addition,the arbitrary graph state and locally maximally entanglable states generation is deterministic,flexible,and highly efficient.Especially,with the"simultaneous"generation pattern,the complexity of the graph state generation and locally maximally entanglable states generation could be reduced greatly,providing a more efficient and feasible way to generate the entangled states.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474168and 61401222)the Qing Lan Project in Jiangsu Province+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(Grant No20113223120002)University Natural Science Research Project of Jiangsu Province(Grant No.11KJB510016)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on the linear optical elements,say the partial parity check gate and the second protocol uses the quantum nondemolition measurement to construct the complete parity check gate.Both protocols can achieve the concentration task.These protocols have several advantages.First,they can obtain a maximally entangled W state only with the help of some single photons,which greatly reduces the number of entanglement resources.Second,in the first protocol,only linear optical elements are required,which is feasible with current techniques.Third,the second protocol can be repeated to perform the concentration step and obtain a higher success probability.All these advantages make it quite useful in current quantum communication and computation applications.
基金supported by the National Basic Research Program of China(Grant No.2013CB921804)the National Natural Science Foundation of China(Grant Nos.11004050,11075050 and 11375060)+2 种基金the Key Project of Chinese Ministry of Education(Grant No.211119)the China Postdoctoral Science Foundation funded project(Grant No.2013T60769)the construct program of the key discipline in Hunan province
文摘We propose new methods to construct universal Greenberger-Horne-Zeilinger(GHZ)-state analyzers without destroying the qubits by using two-qubit parity gates. The idea can be applied to any physical systems where the two-qubit parity gate can be realized.We also investigate the feasibility of nondestructively distinguishing the GHZ-basis states for photonic qubits with such an idea.The nondestructive GHZ-state analyzers can act as generators of GHZ entangled states and are expected to find useful applications for resource-saving quantum information processing.