Let G be a graph, and g and f be integer valued functions defined on V(G) which satisfy g(x)≤f(x) and g(x)≡f(x)(mod 2) for all x∈V(G). Then a spanning subgraph F of G is called a {g,g+2,…,f} -factor if deg_F(x)∈{...Let G be a graph, and g and f be integer valued functions defined on V(G) which satisfy g(x)≤f(x) and g(x)≡f(x)(mod 2) for all x∈V(G). Then a spanning subgraph F of G is called a {g,g+2,…,f} -factor if deg_F(x)∈{g(x),g(x)+2,…,f(x)} for all x∈V(G), when g(x)=1 for all x∈V(G), such a factor is called (1,f) -odd-factor. We give necessary and sufficient conditions for a graph G to have a {g,g+2,…,f} -factor and a (1,f) -odd-factor which contains an arbitrarily given edge of G, from that we derive some interesting results.展开更多
Fully normalized associated Legendre functions(fnALFs)are a set of orthogonal basis functions that are usually calculated by using the recurrence equation.This paper presented the applicability and universality of the...Fully normalized associated Legendre functions(fnALFs)are a set of orthogonal basis functions that are usually calculated by using the recurrence equation.This paper presented the applicability and universality of the standard forward column/row recurrence equation based on the isolated singular factor method and extended-range arithmetic.Isolating a singular factor is a special normalization method that can improve the universality of the standard forward row recurrence equation to a certain extent,its universality can up to degree hundreds.However,it is invalid for standard forward column recurrence equation.The extended-range arithmetic expands the double-precision number field to the quad-precision numberfield.The quad-precision numberfield can retain more significant digits in the operation process and express larger and smaller numbers.The extended-range arithmetic can significantly improve the applicability and universality of the standard forward column/row recurrence equations,its universality can up to degree several thousand.However,the quad-precision numberfield operation needs to occupy more storage space,which is why its operation speed is slow and undesirable in practical applications.In this paper,the X-number method is introduced in the standard forward row recurrence equation for thefirst time.With the use of the X-number method,fnALFs can be recursed to 4.2 billion degree by using standard forward column/row recurrence equations.展开更多
文摘Let G be a graph, and g and f be integer valued functions defined on V(G) which satisfy g(x)≤f(x) and g(x)≡f(x)(mod 2) for all x∈V(G). Then a spanning subgraph F of G is called a {g,g+2,…,f} -factor if deg_F(x)∈{g(x),g(x)+2,…,f(x)} for all x∈V(G), when g(x)=1 for all x∈V(G), such a factor is called (1,f) -odd-factor. We give necessary and sufficient conditions for a graph G to have a {g,g+2,…,f} -factor and a (1,f) -odd-factor which contains an arbitrarily given edge of G, from that we derive some interesting results.
文摘Fully normalized associated Legendre functions(fnALFs)are a set of orthogonal basis functions that are usually calculated by using the recurrence equation.This paper presented the applicability and universality of the standard forward column/row recurrence equation based on the isolated singular factor method and extended-range arithmetic.Isolating a singular factor is a special normalization method that can improve the universality of the standard forward row recurrence equation to a certain extent,its universality can up to degree hundreds.However,it is invalid for standard forward column recurrence equation.The extended-range arithmetic expands the double-precision number field to the quad-precision numberfield.The quad-precision numberfield can retain more significant digits in the operation process and express larger and smaller numbers.The extended-range arithmetic can significantly improve the applicability and universality of the standard forward column/row recurrence equations,its universality can up to degree several thousand.However,the quad-precision numberfield operation needs to occupy more storage space,which is why its operation speed is slow and undesirable in practical applications.In this paper,the X-number method is introduced in the standard forward row recurrence equation for thefirst time.With the use of the X-number method,fnALFs can be recursed to 4.2 billion degree by using standard forward column/row recurrence equations.