证明采用Hankel矩阵时奇异值分解(Singular value decomposition,SVD)可以将信号分解为一系列分量信号的简单线性叠加,为了确定其中的有用分量个数,提出奇异值差分谱的概念。差分谱可以有效地描述有用分量和噪声分量的奇异值性质差异,...证明采用Hankel矩阵时奇异值分解(Singular value decomposition,SVD)可以将信号分解为一系列分量信号的简单线性叠加,为了确定其中的有用分量个数,提出奇异值差分谱的概念。差分谱可以有效地描述有用分量和噪声分量的奇异值性质差异,根据差分谱峰值位置可实现对有用分量个数的确定。研究结果表明,当差分谱最大峰值位于第一个坐标时,则表明原始信号存在较大的直流分量,此时根据第二最大峰值位置可以确定有用分量的个数,否则就根据最大峰值位置来确定分量个数。利用差分谱进一步研究Hankel矩阵的结构对SVD降噪效果的影响,指出矩阵列数和噪声去除量存在抛物线状的对称关系。利用基于差分谱的SVD方法对车削力信号进行处理,结果有效地分离出由于主轴箱故障齿轮的振动而引起的调制信号,并根据此信号可靠地定位了故障齿轮。展开更多
针对滚动轴承故障振动信号的非线性非平稳特性及强噪声特性,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的滚动轴承故障诊断方法.首先对原始信号进行LMD分解,得到若干乘积函数(product function,PF)分量,...针对滚动轴承故障振动信号的非线性非平稳特性及强噪声特性,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的滚动轴承故障诊断方法.首先对原始信号进行LMD分解,得到若干乘积函数(product function,PF)分量,然后对故障特征明显的分量构建Hankel矩阵并进行奇异值分解,求出奇异值差分谱曲线,找到奇异值差分谱最大突变点来确定奇异值重构分量的个数,进而对包含故障特征频段的分量进行消噪和重构,再对重构信号进行Hilbert包络谱分析,提取故障特征.实验结果和工程应用表明:LMD和奇异值差分谱结合的信号特征提取方法,能准确、有效地提取滚动轴承的故障特征频率,对故障类型作出准确判断.展开更多
针对多变量预测模型的模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)方法在参数估计中存在的缺陷,采用分位数回归(Quantile Regression,QR)代替原方法中的最小二乘法进行参数估计,克服最小二乘回归中强假设、易...针对多变量预测模型的模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)方法在参数估计中存在的缺陷,采用分位数回归(Quantile Regression,QR)代替原方法中的最小二乘法进行参数估计,克服最小二乘回归中强假设、易受异常值影响等问题,以此提高模式识别的精度。因此,提出了基于分位数回归的多变量预测模型模式识别方法(Quantile Regression-Variable Predictive Mode Based Cass Discriminate,QRVPMCD)。采用局部特征尺度分解(Local Characteristic-Scale Decomposition,LCD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,提取单分量信号的Hilbert谱奇异值组成故障特征向量,并以此作为QRVPMCD的输入进行滚动轴承故障诊断。对不同工作状态和故障类型下的滚动轴承振动信号进行了分析,结果表明了该方法的有效性。展开更多
为了从复杂的轴承振动信号中提取微弱的故障信息,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的轴承故障诊断方法。首先通过LMD将非平稳的原始轴承故障信号分解为若干个PF(product function)分量,由于背...为了从复杂的轴承振动信号中提取微弱的故障信息,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的轴承故障诊断方法。首先通过LMD将非平稳的原始轴承故障信号分解为若干个PF(product function)分量,由于背景噪声的影响,难以从PF分量准确得到故障频率,对PF分量进行Hankel矩阵重构和奇异值分解,相应的得到奇异值差分谱,根据奇异值差分谱理论对某个PF分量进行消噪和重构,然后再求重构后PF分量的包络谱,便能准确地得到故障频率。仿真分析和滚动轴承内圈故障实例很好地验证了提出的改进方法的有效性。展开更多
文摘证明采用Hankel矩阵时奇异值分解(Singular value decomposition,SVD)可以将信号分解为一系列分量信号的简单线性叠加,为了确定其中的有用分量个数,提出奇异值差分谱的概念。差分谱可以有效地描述有用分量和噪声分量的奇异值性质差异,根据差分谱峰值位置可实现对有用分量个数的确定。研究结果表明,当差分谱最大峰值位于第一个坐标时,则表明原始信号存在较大的直流分量,此时根据第二最大峰值位置可以确定有用分量的个数,否则就根据最大峰值位置来确定分量个数。利用差分谱进一步研究Hankel矩阵的结构对SVD降噪效果的影响,指出矩阵列数和噪声去除量存在抛物线状的对称关系。利用基于差分谱的SVD方法对车削力信号进行处理,结果有效地分离出由于主轴箱故障齿轮的振动而引起的调制信号,并根据此信号可靠地定位了故障齿轮。
文摘针对滚动轴承故障振动信号的非线性非平稳特性及强噪声特性,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的滚动轴承故障诊断方法.首先对原始信号进行LMD分解,得到若干乘积函数(product function,PF)分量,然后对故障特征明显的分量构建Hankel矩阵并进行奇异值分解,求出奇异值差分谱曲线,找到奇异值差分谱最大突变点来确定奇异值重构分量的个数,进而对包含故障特征频段的分量进行消噪和重构,再对重构信号进行Hilbert包络谱分析,提取故障特征.实验结果和工程应用表明:LMD和奇异值差分谱结合的信号特征提取方法,能准确、有效地提取滚动轴承的故障特征频率,对故障类型作出准确判断.
文摘针对多变量预测模型的模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)方法在参数估计中存在的缺陷,采用分位数回归(Quantile Regression,QR)代替原方法中的最小二乘法进行参数估计,克服最小二乘回归中强假设、易受异常值影响等问题,以此提高模式识别的精度。因此,提出了基于分位数回归的多变量预测模型模式识别方法(Quantile Regression-Variable Predictive Mode Based Cass Discriminate,QRVPMCD)。采用局部特征尺度分解(Local Characteristic-Scale Decomposition,LCD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,提取单分量信号的Hilbert谱奇异值组成故障特征向量,并以此作为QRVPMCD的输入进行滚动轴承故障诊断。对不同工作状态和故障类型下的滚动轴承振动信号进行了分析,结果表明了该方法的有效性。
文摘为了从复杂的轴承振动信号中提取微弱的故障信息,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的轴承故障诊断方法。首先通过LMD将非平稳的原始轴承故障信号分解为若干个PF(product function)分量,由于背景噪声的影响,难以从PF分量准确得到故障频率,对PF分量进行Hankel矩阵重构和奇异值分解,相应的得到奇异值差分谱,根据奇异值差分谱理论对某个PF分量进行消噪和重构,然后再求重构后PF分量的包络谱,便能准确地得到故障频率。仿真分析和滚动轴承内圈故障实例很好地验证了提出的改进方法的有效性。