基于高阶奇异值分解(High Order Singular Value Decomposition,HOSVD)降噪的信道预测算法对天线数较少引起的秩不足问题比较敏感,同时也难以应付较大多普勒频移的情况,从而引起信道估计性能和预测性能的急剧下降、损失信道容量.针对这...基于高阶奇异值分解(High Order Singular Value Decomposition,HOSVD)降噪的信道预测算法对天线数较少引起的秩不足问题比较敏感,同时也难以应付较大多普勒频移的情况,从而引起信道估计性能和预测性能的急剧下降、损失信道容量.针对这一问题,提出了一种改进的使用HOSVD降噪的信道预测算法.该算法先利用多输入多输出(Multiple-input Multiple-Output,MIMO)信道固有的空时相关性对采样得到的信道状态信息(Channel State Information,CSI)进行矩阵重排和数据平滑处理,随后基于信道的多维结构特性,使用HOSVD降低噪声的影响,继而重构信道矩阵,最后利用递归最小二乘滤波器对未来时刻的信道状态进行预测.仿真表明,所提算法的估计误差和预测误差性能均明显优于对比算法,这是因为所提算法通过矩阵重排和空时平滑,虚拟地增加了天线数,降低了秩缺失问题对估计和预测精度的影响,从而有效补偿了因误差所致的信道容量的损失.同时,对比天线数和多普勒频移对不同算法性能的影响可见,所提算法也能在大多普勒频移和天线数较少等不利条件下提供较好预测性能和信道容量,具有一定的优越性.展开更多
针对脉冲噪声和随机噪声对经验模式分解所产生的模式混叠和端点效应问题,提出了一种中值滤波-奇异值分解(Median Filter-Singular Value Decomposition,简称MF-SVD)联合降噪的优化经验模式分解方法.利用中值滤波对脉冲噪声的去除能力和...针对脉冲噪声和随机噪声对经验模式分解所产生的模式混叠和端点效应问题,提出了一种中值滤波-奇异值分解(Median Filter-Singular Value Decomposition,简称MF-SVD)联合降噪的优化经验模式分解方法.利用中值滤波对脉冲噪声的去除能力和SVD对随机噪声的抑制能力,同时为了解决SVD降噪中降噪阶次难以确定的问题,提出了能量差分谱的概念改善了SVD降噪能力.联合中值滤波和改进后的SVD降噪方法去除脉冲噪声和随机噪声干扰,有效改善经验模式分解质量.将该方法应用到航空发动机振动试飞数据分析中,很好地获取了表征自由涡轮转子和燃气发生器转子振动特征的数据分量,有效抑制了模式混叠和端点效应,验证了优化经验模式分解方法应用的有效性.展开更多
文摘基于高阶奇异值分解(High Order Singular Value Decomposition,HOSVD)降噪的信道预测算法对天线数较少引起的秩不足问题比较敏感,同时也难以应付较大多普勒频移的情况,从而引起信道估计性能和预测性能的急剧下降、损失信道容量.针对这一问题,提出了一种改进的使用HOSVD降噪的信道预测算法.该算法先利用多输入多输出(Multiple-input Multiple-Output,MIMO)信道固有的空时相关性对采样得到的信道状态信息(Channel State Information,CSI)进行矩阵重排和数据平滑处理,随后基于信道的多维结构特性,使用HOSVD降低噪声的影响,继而重构信道矩阵,最后利用递归最小二乘滤波器对未来时刻的信道状态进行预测.仿真表明,所提算法的估计误差和预测误差性能均明显优于对比算法,这是因为所提算法通过矩阵重排和空时平滑,虚拟地增加了天线数,降低了秩缺失问题对估计和预测精度的影响,从而有效补偿了因误差所致的信道容量的损失.同时,对比天线数和多普勒频移对不同算法性能的影响可见,所提算法也能在大多普勒频移和天线数较少等不利条件下提供较好预测性能和信道容量,具有一定的优越性.
文摘针对脉冲噪声和随机噪声对经验模式分解所产生的模式混叠和端点效应问题,提出了一种中值滤波-奇异值分解(Median Filter-Singular Value Decomposition,简称MF-SVD)联合降噪的优化经验模式分解方法.利用中值滤波对脉冲噪声的去除能力和SVD对随机噪声的抑制能力,同时为了解决SVD降噪中降噪阶次难以确定的问题,提出了能量差分谱的概念改善了SVD降噪能力.联合中值滤波和改进后的SVD降噪方法去除脉冲噪声和随机噪声干扰,有效改善经验模式分解质量.将该方法应用到航空发动机振动试飞数据分析中,很好地获取了表征自由涡轮转子和燃气发生器转子振动特征的数据分量,有效抑制了模式混叠和端点效应,验证了优化经验模式分解方法应用的有效性.