A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence...A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.展开更多
In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving...In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving numerical method is proposed. An e-uniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are presented, which are in agreement with the theoretical predictions.展开更多
文摘A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.
基金the Council of Scientific and Industrial Research,New Delhi,India for its financial support.
文摘In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving numerical method is proposed. An e-uniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are presented, which are in agreement with the theoretical predictions.