In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooli...In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.展开更多
A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations ...A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations canbe used to calculate the mass of star.In addition,we find that star's mass has a minimum when matter state parameterγ→0.展开更多
基金supported by National Natural Science Foundation of China under Grant No.10778719
文摘In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations canbe used to calculate the mass of star.In addition,we find that star's mass has a minimum when matter state parameterγ→0.