在[1]中 Rabinowitz 用变分方法研究了 Hamilton 系统异宿轨道,在[3]中当满足超二次的情况下,讨论了无穷多条同宿轨道。Tanaka[4]用周期解逼近,同宿轨道的方法,研究了二次奇异 Hamilton 系统存在一条同宿轨道.本文用[3]中变分方法讨论...在[1]中 Rabinowitz 用变分方法研究了 Hamilton 系统异宿轨道,在[3]中当满足超二次的情况下,讨论了无穷多条同宿轨道。Tanaka[4]用周期解逼近,同宿轨道的方法,研究了二次奇异 Hamilton 系统存在一条同宿轨道.本文用[3]中变分方法讨论了二次奇异 Hamilton展开更多
本文讨论了一类奇异Markov跳变正系统的稳定性。所讨论的系统带有多重时滞。借助Lyapnov函数,本文给出了一些充分条件,这些充分条件保证所讨论的系统是正系统。另外,给出的充分条件也保证所讨论的系统是正则、无脉冲和随机稳定的。This ...本文讨论了一类奇异Markov跳变正系统的稳定性。所讨论的系统带有多重时滞。借助Lyapnov函数,本文给出了一些充分条件,这些充分条件保证所讨论的系统是正系统。另外,给出的充分条件也保证所讨论的系统是正则、无脉冲和随机稳定的。This paper discusses the stability of a class of positive singular Markov jump systems. The systems considered in this paper have multiple time delays. By employing the Lyapunov function, this paper gives some sufficient conditions. These sufficient conditions ensure that the considered systems are positive. In addition, the given sufficient conditions also ensure that the investigated systems are regular, impulse-free, and stochastically stable.展开更多
文摘在[1]中 Rabinowitz 用变分方法研究了 Hamilton 系统异宿轨道,在[3]中当满足超二次的情况下,讨论了无穷多条同宿轨道。Tanaka[4]用周期解逼近,同宿轨道的方法,研究了二次奇异 Hamilton 系统存在一条同宿轨道.本文用[3]中变分方法讨论了二次奇异 Hamilton
文摘本文讨论了一类奇异Markov跳变正系统的稳定性。所讨论的系统带有多重时滞。借助Lyapnov函数,本文给出了一些充分条件,这些充分条件保证所讨论的系统是正系统。另外,给出的充分条件也保证所讨论的系统是正则、无脉冲和随机稳定的。This paper discusses the stability of a class of positive singular Markov jump systems. The systems considered in this paper have multiple time delays. By employing the Lyapunov function, this paper gives some sufficient conditions. These sufficient conditions ensure that the considered systems are positive. In addition, the given sufficient conditions also ensure that the investigated systems are regular, impulse-free, and stochastically stable.