期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
揭开“奇支瓶”之迷
1
作者 方志斌 《中小学实验与装备》 2000年第6期16-16,共1页
关键词 奇支 湖北省钟祥 重心 提耳 力学知识 氏族社会 水壶 容器 瓶子
下载PDF
保留胃冠状静脉与奇静脉侧支的联合断流术治疗门静脉高压症
2
作者 孟照华 单礼成 +4 位作者 宋平 谭学仕 于柏生 米文宁 张世国 《空军总医院学报》 2002年第4期242-242,共1页
关键词 胃冠状静脉 静脉侧 联合断流术 门静脉高压症 肝硬化 静脉曲张
下载PDF
漳平奇和洞支洞哺乳动物化石初探 被引量:1
3
作者 黄大义 《福建文博》 2016年第4期44-48,共5页
福建漳平奇和洞2008年第三次全国文物普查调查北、东、东南三个支洞,在北、东南支洞出土了一批第四纪哺乳动物化石,东南支洞晚更新世早-中期地层保留较完整,经初步探掘堆积层内动物化石丰富。奇和洞遗址历经3次考古发掘,获得重大考古突... 福建漳平奇和洞2008年第三次全国文物普查调查北、东、东南三个支洞,在北、东南支洞出土了一批第四纪哺乳动物化石,东南支洞晚更新世早-中期地层保留较完整,经初步探掘堆积层内动物化石丰富。奇和洞遗址历经3次考古发掘,获得重大考古突破,被评为2011年度全国十大考古新发现,现被列为第七全国重点文物保护单位。同时,奇和洞是福建境内目前唯一存在晚更新世至全新世连续地层堆积和保存完好的遗址,本文拟对支洞出土动物化石单独整理予以报道,以进一步丰富奇和洞文化的研究内容,为探讨福建晚更新世早、中期古动物群和生态环境提供有价值资料。 展开更多
关键词 和洞 晚更新世 哺乳动物化石
下载PDF
具有完美匹配图的一个新特征
4
作者 李建湘 《邵阳高等专科学校学报》 1992年第3期205-206,209,共3页
0 引言 [1]中指出,一个图G什么时候有一个完美匹配?这个比较困难的问题在1947年为加拿大著名图论学者托特(Tutte)所解决。托特所给出的具有完美匹配的图的特征是用G的奇支来描述的。G的一个奇支,是指图G的一个支中有奇数个点。G中奇支... 0 引言 [1]中指出,一个图G什么时候有一个完美匹配?这个比较困难的问题在1947年为加拿大著名图论学者托特(Tutte)所解决。托特所给出的具有完美匹配的图的特征是用G的奇支来描述的。G的一个奇支,是指图G的一个支中有奇数个点。G中奇支的数目记作oc(G)。于是,一个图G有一个完美匹配当且仅当对任何S(G),有oc(G-S)≤|S|。本文利用文[2]提出的“等秩变换”, 展开更多
关键词 完美匹配 生成树 新特征 树图 弧立 最大匹配 奇支 满秩 邻接矩阵 连通图
下载PDF
SVD-LSSVM and its application in chemical pattern classification 被引量:2
5
作者 TAO Shao-hui CHEN De-zhao HU Wang-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1942-1947,共6页
Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selectin... Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selecting hyper parameters for LSSVM is proposed. SVD-LSSVM is trained through singular value decomposition (SVD) of kernel matrix. Cross validation time of selecting hyper parameters can be saved because a new hyper parameter, singular value contribution rate (SVCR), replaces the penalty factor of LSSVM. Several UCI benchmarking data and the Olive classification problem were used to test SVD-LSSVM. The result showed that SVD-LSSVM has good performance in classification and saves time for cross validation. 展开更多
关键词 Pattern classification Structural risk minimization Least squares support vector machine (LSSVM) Hyper pa-rameter selection Cross validation Singular value decomposition (SVD)
下载PDF
A robust intelligent audio watermarking scheme using support vector machine
6
作者 Mohammad MOSLEH Hadi LATIFPOUR +2 位作者 Mohammad KHEYRANDISH Mahdi MOSLEH Najmeh HOSSEINPOUR 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第12期1320-1330,共11页
Rapid growth in information technology and computer networks has resulted in the universal use of data transmission in the digital domain. However, the major challenge faced by digital data owners is protection of dat... Rapid growth in information technology and computer networks has resulted in the universal use of data transmission in the digital domain. However, the major challenge faced by digital data owners is protection of data against unauthorized copying and distribution. Digital watermark technology is starting to be considered a credible protection method to mitigate the potential challenges that undermine the efficiency of the system. Digital audio watermarking should retain the quality of the host signal in a way that remains inaudible to the human hearing system. It should be sufficiently robust to be resistant against potential attacks, One of the major deficiencies of conventional audio watermarking techniques is the use of non-intelligent decoders in which some sets of specific rules are used for watermark extraction. This paper presents a new robust intelligent audio water- marking scheme using a synergistic combination of singular value decomposition (SVD) and support vector machine (SVM). The methodology involves embedding a watermark data by modulating the singular values in the SVD transform domain. In the extraction process, an intelligent detector using SVM is suggested for extracting the watermark data. By learning the destructive effects of noise, the detector in question can effectively retrieve the watermark. Diverse experiments under various conditions have been carried out to verify the performance of the proposed scheme. Experimental results showed better imperceptibility, higher robustness, lower payload, and higher operational efficiency, for the proposed method than for conventional techniques. 展开更多
关键词 Audio watermarking Copyright protection Singular value decomposition (SVD) Machine learning Support vector machine (SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部