Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selectin...Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selecting hyper parameters for LSSVM is proposed. SVD-LSSVM is trained through singular value decomposition (SVD) of kernel matrix. Cross validation time of selecting hyper parameters can be saved because a new hyper parameter, singular value contribution rate (SVCR), replaces the penalty factor of LSSVM. Several UCI benchmarking data and the Olive classification problem were used to test SVD-LSSVM. The result showed that SVD-LSSVM has good performance in classification and saves time for cross validation.展开更多
Rapid growth in information technology and computer networks has resulted in the universal use of data transmission in the digital domain. However, the major challenge faced by digital data owners is protection of dat...Rapid growth in information technology and computer networks has resulted in the universal use of data transmission in the digital domain. However, the major challenge faced by digital data owners is protection of data against unauthorized copying and distribution. Digital watermark technology is starting to be considered a credible protection method to mitigate the potential challenges that undermine the efficiency of the system. Digital audio watermarking should retain the quality of the host signal in a way that remains inaudible to the human hearing system. It should be sufficiently robust to be resistant against potential attacks, One of the major deficiencies of conventional audio watermarking techniques is the use of non-intelligent decoders in which some sets of specific rules are used for watermark extraction. This paper presents a new robust intelligent audio water- marking scheme using a synergistic combination of singular value decomposition (SVD) and support vector machine (SVM). The methodology involves embedding a watermark data by modulating the singular values in the SVD transform domain. In the extraction process, an intelligent detector using SVM is suggested for extracting the watermark data. By learning the destructive effects of noise, the detector in question can effectively retrieve the watermark. Diverse experiments under various conditions have been carried out to verify the performance of the proposed scheme. Experimental results showed better imperceptibility, higher robustness, lower payload, and higher operational efficiency, for the proposed method than for conventional techniques.展开更多
基金Project (No. 20276063) supported by the National Natural Science Foundation of China
文摘Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selecting hyper parameters for LSSVM is proposed. SVD-LSSVM is trained through singular value decomposition (SVD) of kernel matrix. Cross validation time of selecting hyper parameters can be saved because a new hyper parameter, singular value contribution rate (SVCR), replaces the penalty factor of LSSVM. Several UCI benchmarking data and the Olive classification problem were used to test SVD-LSSVM. The result showed that SVD-LSSVM has good performance in classification and saves time for cross validation.
基金Project supported by the Dezfoul Branch,Islamic Azad University,Dezfoul,Iran
文摘Rapid growth in information technology and computer networks has resulted in the universal use of data transmission in the digital domain. However, the major challenge faced by digital data owners is protection of data against unauthorized copying and distribution. Digital watermark technology is starting to be considered a credible protection method to mitigate the potential challenges that undermine the efficiency of the system. Digital audio watermarking should retain the quality of the host signal in a way that remains inaudible to the human hearing system. It should be sufficiently robust to be resistant against potential attacks, One of the major deficiencies of conventional audio watermarking techniques is the use of non-intelligent decoders in which some sets of specific rules are used for watermark extraction. This paper presents a new robust intelligent audio water- marking scheme using a synergistic combination of singular value decomposition (SVD) and support vector machine (SVM). The methodology involves embedding a watermark data by modulating the singular values in the SVD transform domain. In the extraction process, an intelligent detector using SVM is suggested for extracting the watermark data. By learning the destructive effects of noise, the detector in question can effectively retrieve the watermark. Diverse experiments under various conditions have been carried out to verify the performance of the proposed scheme. Experimental results showed better imperceptibility, higher robustness, lower payload, and higher operational efficiency, for the proposed method than for conventional techniques.