We study the differential uniformity of a class of permutations over F2 n with n even. These permutations are different from the inverse function as the values x^(-1) are modified to be(γx)^(-1) on some cosets of a f...We study the differential uniformity of a class of permutations over F2 n with n even. These permutations are different from the inverse function as the values x^(-1) are modified to be(γx)^(-1) on some cosets of a fixed subgroup γ of F_(2n)~*. We obtain some sufficient conditions for this kind of permutations to be differentially 4-uniform, which enable us to construct a new family of differentially 4-uniform permutations that contains many new Carlet-Charpin-Zinoviev equivalent(CCZ-equivalent) classes as checked by Magma for small numbers n. Moreover, all of the newly constructed functions are proved to possess optimal algebraic degree and relatively high nonlinearity.展开更多
The authors define the directional hyper Hilbert transform and give ita mixed norm estimate. The similar conclusions for the directional fractional integral of one dimension are also obtained in this paper. As an appl...The authors define the directional hyper Hilbert transform and give ita mixed norm estimate. The similar conclusions for the directional fractional integral of one dimension are also obtained in this paper. As an application of the above results, the authors give the Lp-boundedness for a class of the hyper singular integrals and the fractional integrals with variable kernel. Moreover, as another application of the above results, the authors prove the dimension free estimate for the hyper Riesz transform. This is an extension of the related result obtained by Stein.展开更多
This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kern...This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kernel-distribution spaces, and characterizes them in two wavelet coefficients spaces. Besides, some properties for singular integral operators are studied.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.61202463 and 61202471)Shanghai Key Laboratory of Intelligent Information Processing(Grant No.IIPL-2014-005)
文摘We study the differential uniformity of a class of permutations over F2 n with n even. These permutations are different from the inverse function as the values x^(-1) are modified to be(γx)^(-1) on some cosets of a fixed subgroup γ of F_(2n)~*. We obtain some sufficient conditions for this kind of permutations to be differentially 4-uniform, which enable us to construct a new family of differentially 4-uniform permutations that contains many new Carlet-Charpin-Zinoviev equivalent(CCZ-equivalent) classes as checked by Magma for small numbers n. Moreover, all of the newly constructed functions are proved to possess optimal algebraic degree and relatively high nonlinearity.
基金the 973 Project of China(No.G1999075105)the National Natural ScienceFoundation of China(No.19631080,No.10271016)the Zhejiang Provincial Natural ScienceFoundation of China(No.RC97017,No.197042).
文摘The authors define the directional hyper Hilbert transform and give ita mixed norm estimate. The similar conclusions for the directional fractional integral of one dimension are also obtained in this paper. As an application of the above results, the authors give the Lp-boundedness for a class of the hyper singular integrals and the fractional integrals with variable kernel. Moreover, as another application of the above results, the authors prove the dimension free estimate for the hyper Riesz transform. This is an extension of the related result obtained by Stein.
基金Project supported by the National Natural Science Foundation of China (No. 10001027).
文摘This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kernel-distribution spaces, and characterizes them in two wavelet coefficients spaces. Besides, some properties for singular integral operators are studied.