We investigate a special timelike surfaces in Anti de Sitter 3-space.We call such a timelike surface an Anti de Sitter horospherical flat surface which belongs to a class of surfaces given by one parameter families of...We investigate a special timelike surfaces in Anti de Sitter 3-space.We call such a timelike surface an Anti de Sitter horospherical flat surface which belongs to a class of surfaces given by one parameter families of Anti de Sitter horocycle.We give a generic classification of singularities and study the geometric properties of such surfaces from the viewpoint of Legendrian singularity theory.展开更多
Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(...Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(·,t)(M^n) satisfy an initial value problem dF/dt (·,t) = -H^k(· ,t)v(· ,t), F(· ,0) = F0(· ), where H is the mean curvature and u(·,t) is the outer unit normal at F(·, t), such that -Hu = H is the mean curvature vector, and k 〉 0 is a constant. This problem is called H^k-fiow. Such flow will develop singularities after finite time. According to the blow-up rate of the square norm of the second fundamental forms, the authors analyze the structure of the rescaled limit by classifying the singularities as two types, i.e., Type Ⅰ and Type Ⅱ. It is proved that for Type Ⅰ singularity, the limiting hypersurface satisfies an elliptic equation; for Type Ⅱ singularity, the limiting hypersurface must be a translating soliton.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11101072 and 11271063)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘We investigate a special timelike surfaces in Anti de Sitter 3-space.We call such a timelike surface an Anti de Sitter horospherical flat surface which belongs to a class of surfaces given by one parameter families of Anti de Sitter horocycle.We give a generic classification of singularities and study the geometric properties of such surfaces from the viewpoint of Legendrian singularity theory.
基金supported by the National Natural Science Foundation of China (Nos. 10771189, 10831008)
文摘Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(·,t)(M^n) satisfy an initial value problem dF/dt (·,t) = -H^k(· ,t)v(· ,t), F(· ,0) = F0(· ), where H is the mean curvature and u(·,t) is the outer unit normal at F(·, t), such that -Hu = H is the mean curvature vector, and k 〉 0 is a constant. This problem is called H^k-fiow. Such flow will develop singularities after finite time. According to the blow-up rate of the square norm of the second fundamental forms, the authors analyze the structure of the rescaled limit by classifying the singularities as two types, i.e., Type Ⅰ and Type Ⅱ. It is proved that for Type Ⅰ singularity, the limiting hypersurface satisfies an elliptic equation; for Type Ⅱ singularity, the limiting hypersurface must be a translating soliton.