期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
关于在类Lienard方程的全局相图
1
作者 吴开腾 陈龙伟 《云南师范大学学报(自然科学版)》 1997年第4期15-21,共7页
本文研究一类具有很强的物理背景的Lienard方程,讨论了该方程的奇点性质,证明了闭轨不存在性。改进了「1」与「2」的结果,并用定性的方法作了其全局相图。
关键词 LIENARD方程 奇点性质 全局相图
下载PDF
关于一类n次多项式系统的研究
2
作者 吴开腾 《云南大学学报(自然科学版)》 CAS CSCD 1998年第S2期250-254,共5页
本文研究一类n次多项式系统的奇点及其性质,给出了该系统的闭轨不存在性的条件,推广了已有文献的结果,并当n=3,其奇点唯一时,证明了其全局渐近稳定性.
关键词 n次多项式系统 奇点性质 全局渐近稳定性
原文传递
Anti de Sitter horospherical flat timelike surfaces 被引量:4
3
作者 CHEN Liang IZUMIYA Shyuichi +1 位作者 PEI DongHe SAJI Kentaro 《Science China Mathematics》 SCIE 2014年第9期1841-1866,共26页
We investigate a special timelike surfaces in Anti de Sitter 3-space.We call such a timelike surface an Anti de Sitter horospherical flat surface which belongs to a class of surfaces given by one parameter families of... We investigate a special timelike surfaces in Anti de Sitter 3-space.We call such a timelike surface an Anti de Sitter horospherical flat surface which belongs to a class of surfaces given by one parameter families of Anti de Sitter horocycle.We give a generic classification of singularities and study the geometric properties of such surfaces from the viewpoint of Legendrian singularity theory. 展开更多
关键词 Anti de Sitter 3-space timelike surface AdS-horocycle AdS-horocyclic surface SINGULARITIES
原文传递
On Asymptotic Behavior for Singularities of the Powers of Mean Curvature Flow
4
作者 Weimin SHENG Chao WU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第1期51-66,共16页
Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(... Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(·,t)(M^n) satisfy an initial value problem dF/dt (·,t) = -H^k(· ,t)v(· ,t), F(· ,0) = F0(· ), where H is the mean curvature and u(·,t) is the outer unit normal at F(·, t), such that -Hu = H is the mean curvature vector, and k 〉 0 is a constant. This problem is called H^k-fiow. Such flow will develop singularities after finite time. According to the blow-up rate of the square norm of the second fundamental forms, the authors analyze the structure of the rescaled limit by classifying the singularities as two types, i.e., Type Ⅰ and Type Ⅱ. It is proved that for Type Ⅰ singularity, the limiting hypersurface satisfies an elliptic equation; for Type Ⅱ singularity, the limiting hypersurface must be a translating soliton. 展开更多
关键词 H^k-Curvature flow Type singularities Type singularities
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部