In the present paper the concepts “the critical point system” and “the critical point-cycle system” with index +1 are introduced for the system of the form where (y) and g(x) may have several zero points.Then we s...In the present paper the concepts “the critical point system” and “the critical point-cycle system” with index +1 are introduced for the system of the form where (y) and g(x) may have several zero points.Then we show that Dragilev's Theorem,Zhang Zhi-fen's Theorem etc.,after appropriate mo- dification can be used to discuss the existence and uniqueness of limit cy- cles aroud several critical points.Finally,making use of these results,we give more complete qualitative analysis for a self-excited system with th- ree equilibrium positions,governed by-the equation展开更多
Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and ...Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.展开更多
This paper gives the existence of a relatively stable duck solution in a slow-fast system in R2+2 with an invariant manifold. The slow-fast system in R2+: has a 2-dimensional slow vector field and a 2-dimensional f...This paper gives the existence of a relatively stable duck solution in a slow-fast system in R2+2 with an invariant manifold. The slow-fast system in R2+: has a 2-dimensional slow vector field and a 2-dimensional fast vector field. The fast vector field restricts a feasible region of the slow vector field strictly. In the case of the slow-fast system in R2+1 , that is, the fast vector field is l-dimension, it is classified according to its sign, because it gives only negative(-), positive(+) or zero sign. Then it is attractive, repulsive or stationary. On the other hand, in R2~2 , the fast vector field has combinatorial cases. It causes a complex state to analyze the system. First, we introduce a local model near the pseudo singular point on which we classify the fast vector field attractive(-,-), attractive-repulsive(-,+) or repulsive(+,+), simply as possible. We prove the existence of a 4-dimensional duck solution in the local model. Secondarily, we assume that the slow-fast system has an invariant manifold near the pseudo singular point. When the invariant manifold has a homoclinic point near the pseudo singular point, we show that the slow-fast sytem has a 4-dimensional duck solution having a relatively stable region.展开更多
Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s...Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.展开更多
In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficie...In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.展开更多
文摘In the present paper the concepts “the critical point system” and “the critical point-cycle system” with index +1 are introduced for the system of the form where (y) and g(x) may have several zero points.Then we show that Dragilev's Theorem,Zhang Zhi-fen's Theorem etc.,after appropriate mo- dification can be used to discuss the existence and uniqueness of limit cy- cles aroud several critical points.Finally,making use of these results,we give more complete qualitative analysis for a self-excited system with th- ree equilibrium positions,governed by-the equation
文摘Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.
文摘This paper gives the existence of a relatively stable duck solution in a slow-fast system in R2+2 with an invariant manifold. The slow-fast system in R2+: has a 2-dimensional slow vector field and a 2-dimensional fast vector field. The fast vector field restricts a feasible region of the slow vector field strictly. In the case of the slow-fast system in R2+1 , that is, the fast vector field is l-dimension, it is classified according to its sign, because it gives only negative(-), positive(+) or zero sign. Then it is attractive, repulsive or stationary. On the other hand, in R2~2 , the fast vector field has combinatorial cases. It causes a complex state to analyze the system. First, we introduce a local model near the pseudo singular point on which we classify the fast vector field attractive(-,-), attractive-repulsive(-,+) or repulsive(+,+), simply as possible. We prove the existence of a 4-dimensional duck solution in the local model. Secondarily, we assume that the slow-fast system has an invariant manifold near the pseudo singular point. When the invariant manifold has a homoclinic point near the pseudo singular point, we show that the slow-fast sytem has a 4-dimensional duck solution having a relatively stable region.
基金Project(11JJ3080)supported by Natural Science Foundation of Hunan Province,ChinaProject(11CY012)supported by Cultivation in Hunan Colleges and Universities,ChinaProject(ET51007)supported by Youth Talent in Hunan University,China
文摘Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.
基金supported by National Natural Science Foundation of China(Grant No.10901093)National Science Foundation of Shandong Province(Grant No.ZR2013AM006)
文摘In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.