This paper deals with bifurcations of subharmonic solutions and invariant tori generated from limit cycles in the fast dynamics for a nonautonomous singularly perturbed system. Based on Poincare map, a series of blow-...This paper deals with bifurcations of subharmonic solutions and invariant tori generated from limit cycles in the fast dynamics for a nonautonomous singularly perturbed system. Based on Poincare map, a series of blow-up transformations and the theory of integral manifold, the conditions for the existence of invariant tori are obtained, and the saddle-node bifurcations of subharmonic solutions are studied.展开更多
Let B R^n be the unit ball centered at the origin. The authors consider the following biharmonic equation:{?~2u = λ(1 + u)~p in B,u =?u/?ν= 0 on ?B, where p >n+4/ n-4and ν is the outward unit normal vector. It ...Let B R^n be the unit ball centered at the origin. The authors consider the following biharmonic equation:{?~2u = λ(1 + u)~p in B,u =?u/?ν= 0 on ?B, where p >n+4/ n-4and ν is the outward unit normal vector. It is well-known that there exists a λ*> 0 such that the biharmonic equation has a solution for λ∈ (0, λ*) and has a unique weak solution u*with parameter λ = λ*, called the extremal solution. It is proved that u* is singular when n ≥ 13 for p large enough and satisfies u*≤ r^(-4/ (p-1)) - 1 on the unit ball, which actually solve a part of the open problem left in [D`avila, J., Flores, I., Guerra, I., Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., 348(1), 2009, 143–193] .展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10671214)the Chongqing Natural Science Foundation of China (No. 2005cc14)Shanghai Shuguang Genzong Project (No.04SGG05)
文摘This paper deals with bifurcations of subharmonic solutions and invariant tori generated from limit cycles in the fast dynamics for a nonautonomous singularly perturbed system. Based on Poincare map, a series of blow-up transformations and the theory of integral manifold, the conditions for the existence of invariant tori are obtained, and the saddle-node bifurcations of subharmonic solutions are studied.
基金supported by the National Natural Science Foundation of China(Nos.11201119,11471099)the International Cultivation of Henan Advanced Talents and the Research Foundation of Henan University(No.yqpy20140043)
文摘Let B R^n be the unit ball centered at the origin. The authors consider the following biharmonic equation:{?~2u = λ(1 + u)~p in B,u =?u/?ν= 0 on ?B, where p >n+4/ n-4and ν is the outward unit normal vector. It is well-known that there exists a λ*> 0 such that the biharmonic equation has a solution for λ∈ (0, λ*) and has a unique weak solution u*with parameter λ = λ*, called the extremal solution. It is proved that u* is singular when n ≥ 13 for p large enough and satisfies u*≤ r^(-4/ (p-1)) - 1 on the unit ball, which actually solve a part of the open problem left in [D`avila, J., Flores, I., Guerra, I., Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., 348(1), 2009, 143–193] .