Based on a daily precipitation observation dataset of 743 stations in China from 1951 2004, the F distribution function is used to calculate the probability distribution of daily precipitation and to define extreme pr...Based on a daily precipitation observation dataset of 743 stations in China from 1951 2004, the F distribution function is used to calculate the probability distribution of daily precipitation and to define extreme precipitation events. Based on this, the relationship of ENSO and the frequency of extreme precipitation events is studied. Results reveal that ENSO events have impact on extreme precipitation events, with different magnitudes at different regions and seasons. In general, during winter and spring, extreme precipitation events occur more often during E1 Nino events than during La Nina events. While during summer and autumn, the opposite is found. The relationship of a two season-lag ENSO and extreme precipitation frequency shows different pattern. Extreme precipitation events occur more often in several regions if an ENSO warm phase happened in the central-eastern tropical Pacific two seasons before. No similar impacts of El Nino and La Nina on the frequency of extreme precipitation events are found.展开更多
This study investigated the relationship be- tween the asymmetry in the duration of El Nifio and La Nina and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long d...This study investigated the relationship be- tween the asymmetry in the duration of El Nifio and La Nina and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long decaying ENSO cases rather than the short decaying ones. The evolutions of short decaying El Nino and La Nina are approximately a mirror image with a rapid decline in the following summer for the warm and cold events. However, a robust asymmetry was found in long decaying cases, with a prolonged and re-intensified La Nina in the following winter. The asymmetry for long decaying cases starts from the westward extension of the zonal wind anomalies in a mature winter, and is further contributed to by the air-sea interaction over the tropical Pacific in the following seasons.展开更多
A class of coupled system of the El Nino/La Nino-Southern Oscillation (ENSO)mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSOmodel are obtained and the asymptotic beh...A class of coupled system of the El Nino/La Nino-Southern Oscillation (ENSO)mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSOmodel are obtained and the asymptotic behavior of the solution for corresponding problem isconsidered. And it is pointed out that the solution tends to the corresponding attractor as t → ∞.展开更多
基金supported by the program under Grant No.2007BAC29B04
文摘Based on a daily precipitation observation dataset of 743 stations in China from 1951 2004, the F distribution function is used to calculate the probability distribution of daily precipitation and to define extreme precipitation events. Based on this, the relationship of ENSO and the frequency of extreme precipitation events is studied. Results reveal that ENSO events have impact on extreme precipitation events, with different magnitudes at different regions and seasons. In general, during winter and spring, extreme precipitation events occur more often during E1 Nino events than during La Nina events. While during summer and autumn, the opposite is found. The relationship of a two season-lag ENSO and extreme precipitation frequency shows different pattern. Extreme precipitation events occur more often in several regions if an ENSO warm phase happened in the central-eastern tropical Pacific two seasons before. No similar impacts of El Nino and La Nina on the frequency of extreme precipitation events are found.
基金supported by the National Natural Science Foundation of China (Grant No. 41105046)
文摘This study investigated the relationship be- tween the asymmetry in the duration of El Nifio and La Nina and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long decaying ENSO cases rather than the short decaying ones. The evolutions of short decaying El Nino and La Nina are approximately a mirror image with a rapid decline in the following summer for the warm and cold events. However, a robust asymmetry was found in long decaying cases, with a prolonged and re-intensified La Nina in the following winter. The asymmetry for long decaying cases starts from the westward extension of the zonal wind anomalies in a mature winter, and is further contributed to by the air-sea interaction over the tropical Pacific in the following seasons.
基金This work is supported by the National Natural Science Foundation of China (No 90211004 and 10471039)the Natural Science Foundatuon of Zhejiang Province (No 102009).
文摘A class of coupled system of the El Nino/La Nino-Southern Oscillation (ENSO)mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSOmodel are obtained and the asymptotic behavior of the solution for corresponding problem isconsidered. And it is pointed out that the solution tends to the corresponding attractor as t → ∞.