The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperat...The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.展开更多
Close-coupling equation and anisotropic potential developed in our previous research are applied to HE-SHe (4He, 6He, 8He,10He) collision system, and partial cross sections (PCSs) at the incident energy of 40 me V...Close-coupling equation and anisotropic potential developed in our previous research are applied to HE-SHe (4He, 6He, 8He,10He) collision system, and partial cross sections (PCSs) at the incident energy of 40 me V are calculated. By analyzing the differences of these PCSs, change rules of PCSs with the increase of partial wave number, and with the change of the mass of isotope substitution helium atom are obtained. The results show that excitation PCSs converge faster than elastic PCSs for collision energy and each of systems considered here. Also excitation PCSs converge more rapidly for high-excited states. Tail effect is present only in elastic scattering and low-excited states but not in high- excited states. With the increase of the mass of isotope substitution helium atom, converging speed of elastic, total inelastic, and state-to-state excitation PCS slows down, and the maxima of these PCSs undergoes a regular change.展开更多
The dynamics of a supersonic missile with a deflectable nose are studied. To describe the effects of nose deflection on the dynamic model, theorems of momentum and angular momentum are adopted to develop the translati...The dynamics of a supersonic missile with a deflectable nose are studied. To describe the effects of nose deflection on the dynamic model, theorems of momentum and angular momentum are adopted to develop the translational equation and rotation equation, respectively. Because the exact model is complex, it is simplified. The simplified model suggests that the main influence of nose deflection on the dynamic model is due to the product of the time derivatives of the azimuth angle and the elevation angle, which makes the dynamic model an impulsive differential system. Considering the aerodynamic characteristics a numerical simulation is sufficient to show the open-loop characteristics of the missile.展开更多
A square graphene single electron transistor (SET) was defined with two side gates, and its transport was studied at low temperature at T = 2 K. At zero magnetic field, Coulomb blockade oscillations were clearly obs...A square graphene single electron transistor (SET) was defined with two side gates, and its transport was studied at low temperature at T = 2 K. At zero magnetic field, Coulomb blockade oscillations were clearly observed near the Dirac point of this device. At high magnetic field, in the quantum Hall regime, we observed ballistic tunneling of the carders through the graphene SET, contrary to the Coulomb blockades observed while approaching the vicinity of the Dirac point.展开更多
Ballistic thermal transport properties in a cylindrical quantum structure modulated with double quantum dots(DQDs) are investigated.Results show that the transmission coefficients exhibit the irregular oscillation.Som...Ballistic thermal transport properties in a cylindrical quantum structure modulated with double quantum dots(DQDs) are investigated.Results show that the transmission coefficients exhibit the irregular oscillation.Some resonant transmission peaks and stop-frequency gaps can be observed,and the number and positions of these peaks and gaps are sensitive to the sizes of DQDs.With increasing the temperature,the thermal conductance undergoes a transition from the decrease to increase,and can be efficiently tuned by modulating the radius,length of DQDs as well as the interval between DQDs.In addition,at low temperatures,the enhancement of the thermal conductance can be also observed in this case.Some similarities and differences between the cylindrical and rectangular structures are identified.展开更多
Prior studies using single and binary adsorbates indicate that nanografting impacts the reaction pathways and local structure of self-assembled monolayers (SAMs). This work explores the influence of nanografting in ...Prior studies using single and binary adsorbates indicate that nanografting impacts the reaction pathways and local structure of self-assembled monolayers (SAMs). This work explores the influence of nanografting in the case of ternary SAMs. Using atomic force microscopy (AFM) as both a nanografting and imaging tool, the local structures of two ternary SAMs, SC14:SSC10CHO:SC2COOH and SC18:SSC10CHO:SC2COOH, formed under natural growth and nanografting were imaged and compared. The results indicate that nanografting impacts the degree of phase segregation and the domain height in ternary SAMs. In addition to the previously known effect of altering self-assembly pathways, this study reveals an additional impact for these ternary systems: By shaving over the previous trajectory (grafted region), nanografting could start exchange reactions and lateral movement of surface-bound thiols, which leads to new and somewhat unanticipated local structures.展开更多
基金中国科学院资助项目,Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education of China
文摘The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10676025 and 10974139
文摘Close-coupling equation and anisotropic potential developed in our previous research are applied to HE-SHe (4He, 6He, 8He,10He) collision system, and partial cross sections (PCSs) at the incident energy of 40 me V are calculated. By analyzing the differences of these PCSs, change rules of PCSs with the increase of partial wave number, and with the change of the mass of isotope substitution helium atom are obtained. The results show that excitation PCSs converge faster than elastic PCSs for collision energy and each of systems considered here. Also excitation PCSs converge more rapidly for high-excited states. Tail effect is present only in elastic scattering and low-excited states but not in high- excited states. With the increase of the mass of isotope substitution helium atom, converging speed of elastic, total inelastic, and state-to-state excitation PCS slows down, and the maxima of these PCSs undergoes a regular change.
文摘The dynamics of a supersonic missile with a deflectable nose are studied. To describe the effects of nose deflection on the dynamic model, theorems of momentum and angular momentum are adopted to develop the translational equation and rotation equation, respectively. Because the exact model is complex, it is simplified. The simplified model suggests that the main influence of nose deflection on the dynamic model is due to the product of the time derivatives of the azimuth angle and the elevation angle, which makes the dynamic model an impulsive differential system. Considering the aerodynamic characteristics a numerical simulation is sufficient to show the open-loop characteristics of the missile.
基金supported by the National Natural Science Foundation of China (Grant No. 10874220)the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. KJCX2-YW- W30)the Natinal Basic Research Program of China from the MOST (Grant No. 2011CB932704)
文摘A square graphene single electron transistor (SET) was defined with two side gates, and its transport was studied at low temperature at T = 2 K. At zero magnetic field, Coulomb blockade oscillations were clearly observed near the Dirac point of this device. At high magnetic field, in the quantum Hall regime, we observed ballistic tunneling of the carders through the graphene SET, contrary to the Coulomb blockades observed while approaching the vicinity of the Dirac point.
基金supported by the National Natural Science Foundation of China (Grant No.11204074)
文摘Ballistic thermal transport properties in a cylindrical quantum structure modulated with double quantum dots(DQDs) are investigated.Results show that the transmission coefficients exhibit the irregular oscillation.Some resonant transmission peaks and stop-frequency gaps can be observed,and the number and positions of these peaks and gaps are sensitive to the sizes of DQDs.With increasing the temperature,the thermal conductance undergoes a transition from the decrease to increase,and can be efficiently tuned by modulating the radius,length of DQDs as well as the interval between DQDs.In addition,at low temperatures,the enhancement of the thermal conductance can be also observed in this case.Some similarities and differences between the cylindrical and rectangular structures are identified.
文摘Prior studies using single and binary adsorbates indicate that nanografting impacts the reaction pathways and local structure of self-assembled monolayers (SAMs). This work explores the influence of nanografting in the case of ternary SAMs. Using atomic force microscopy (AFM) as both a nanografting and imaging tool, the local structures of two ternary SAMs, SC14:SSC10CHO:SC2COOH and SC18:SSC10CHO:SC2COOH, formed under natural growth and nanografting were imaged and compared. The results indicate that nanografting impacts the degree of phase segregation and the domain height in ternary SAMs. In addition to the previously known effect of altering self-assembly pathways, this study reveals an additional impact for these ternary systems: By shaving over the previous trajectory (grafted region), nanografting could start exchange reactions and lateral movement of surface-bound thiols, which leads to new and somewhat unanticipated local structures.