为了进一步提高低信噪比下语音激活检测(VAD)的准确率,该文提出一种基于子带双特征的自适应保留似然比鲁棒语音激活检测算法。算法采用子带归一化最大自相关函数与子带归一化平均过零率双重特征设置频率分量似然比的保留权值,同时利...为了进一步提高低信噪比下语音激活检测(VAD)的准确率,该文提出一种基于子带双特征的自适应保留似然比鲁棒语音激活检测算法。算法采用子带归一化最大自相关函数与子带归一化平均过零率双重特征设置频率分量似然比的保留权值,同时利用已过去固定时长的VAD判决结果及对应的子带特征参数自适应地估计似然比的保留阈值。实验结果表明,此算法的VAD检测准确率相比原保留似然比算法在10 d B,0 d B和-10 d B平稳白噪声下分别提高了1.2%,7.2%和8.1%,在10 d B和0 d B非平稳Babble噪声下分别提高了1.6%和3.4%。当其被用于2.4 kbps低速率声码器系统时,合成语音的感知语音质量评价(PESQ)比原声码器系统在白噪声下提高了0.098~0.153,在Babble噪声下提高了0.157~0.186。展开更多
文摘为了进一步提高低信噪比下语音激活检测(VAD)的准确率,该文提出一种基于子带双特征的自适应保留似然比鲁棒语音激活检测算法。算法采用子带归一化最大自相关函数与子带归一化平均过零率双重特征设置频率分量似然比的保留权值,同时利用已过去固定时长的VAD判决结果及对应的子带特征参数自适应地估计似然比的保留阈值。实验结果表明,此算法的VAD检测准确率相比原保留似然比算法在10 d B,0 d B和-10 d B平稳白噪声下分别提高了1.2%,7.2%和8.1%,在10 d B和0 d B非平稳Babble噪声下分别提高了1.6%和3.4%。当其被用于2.4 kbps低速率声码器系统时,合成语音的感知语音质量评价(PESQ)比原声码器系统在白噪声下提高了0.098~0.153,在Babble噪声下提高了0.157~0.186。