A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based o...A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.展开更多
An optimization method for 3D blade and meridional contour of centrifugal or mixed-flow impeller based on the 3D viscous computational fluid dynamics (CFD) analysis is proposed. The blade is indirectly parameterized...An optimization method for 3D blade and meridional contour of centrifugal or mixed-flow impeller based on the 3D viscous computational fluid dynamics (CFD) analysis is proposed. The blade is indirectly parameterized using the angular momentum and calculated by inverse design method. The design variables are separated into two categories: the meridional contour design vari- ables and the blade design variables. Firstly, only the blade is optimized using genetic algorithm with the meridional contour remained constant. The artificial neural network (ANN) techniques with the training sample data schemed according to design of experiment theory are adopted to construct the response relation between the blade design variables and the impeller performance. Then, based on the ANN approximated relation between the meridional contour design variables and impeller per- formance, the meridional contour is optimized. Fewer design variables and less calculation effort is required in this method that may be widely used in the optimization of three-dimension impellers. An optimized impeller in a mixed-flow pump, where the head and the efficiency are enhanced by 12.9% and 4.5% respectively, confirms the validity of this newly proposed method.展开更多
A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning ele...A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning electron microscope (SEM) photos of particles were processed using an image.processing software (IPS) Photoshop. Taking the pixel as a fixed yardstick with the enlargement of the size of the particle image, the box-dimension and circumference-area (C-S) methods were used to calculate the FD of the surface profile of the particle. The FD of 1.2623 of the classic Koch curve is obtained, which approximates the true value of 1.2628. The complexities of the object's boundary and surface micro-topography are simulated successfully by a generator method.展开更多
A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinder...A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.展开更多
The present paper is aimed to better illustrate the possible association between a particular extremely weak field, the air ions, and the human health response to this solicitation. Methods and instruments for this ki...The present paper is aimed to better illustrate the possible association between a particular extremely weak field, the air ions, and the human health response to this solicitation. Methods and instruments for this kind of analysis are here given in the form of a project: a "Ions meter", to reveal and characterize the properties of the air ions, and "APEC 300", an advanced electronic device, both instruments are with a HPR (high power of resolution). APEC 300 can give the response to the possible health effects by measurements of two electrocuteaneous parameter: the potential level and the impedance. The power of resolution of APEC 300 is much higher than that of other usual devices, for instance, the EAV ones (electroacupuncture), this instrument will be completely ready within few weeks.展开更多
If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if th...If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if the object goes beyond the limits of mean shift snake module operation in suc- cessive sequences, mean shift snake's nodes may also fall into the local minima in their moving to the new object position. This paper presents a motion compensation strategy by using particle filter; therefore a new Particle Filter Mean Shift Snake (PFMSS) algorithm is proposed which combines particle filter with mean shift snake to fulfill the estimation of the fast moving object contour. Firstly, the fast moving object is tracked by particle filter to create a coarse position which is used to initialize the mean shift algorithm. Secondly, the whole relevant motion information is used to compensate the snake's node positions. Finally, snake algorithm is used to extract the exact object contour and the useful information of the object is fed back. Some real world sequences are tested and the results show that the novel tracking method have a good performance with high accuracy in solving the fast moving problems in cluttered background.展开更多
Recent studies have indicated that hypervelocity impacts by meteoroids and space debris can induce spacecraft anomalies. However, the basic physical process through which space debris impacts cause anomalies is not en...Recent studies have indicated that hypervelocity impacts by meteoroids and space debris can induce spacecraft anomalies. However, the basic physical process through which space debris impacts cause anomalies is not entirely clear. Currently, impact-generated plasma is thought to be the primary cause of electrical spacecraft anomalies, while the effects of impact-generated mechanical damage have rarely been researched. This paper presents new evidence showing that impact-generated mechanical damage strongly influences electrostatic discharge. Hypervelocity impact experiments were conducted in a plasma drag particle accelerator, using particles with diameters of 200–500 ?m and velocities of 2–7 km/s. The impact-generated mechanical damage on a specimen surface was measured by a stereoscopic microscope and 3D Profilometer and it indicated that microscopic irregularities around the impact crater could be responsible for local electric field enhancement. Furthermore, the influence of impact-generated mechanical damage on electrostatic discharge was simulated in an inverted potential gradient situation. The experimental results show that the electrostatic discharge voltage threshold was significantly reduced after the specimen was impacted by particles.展开更多
文摘A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.
基金This project is supported by National Natural Science Foundation of China (No.50136030).
文摘An optimization method for 3D blade and meridional contour of centrifugal or mixed-flow impeller based on the 3D viscous computational fluid dynamics (CFD) analysis is proposed. The blade is indirectly parameterized using the angular momentum and calculated by inverse design method. The design variables are separated into two categories: the meridional contour design vari- ables and the blade design variables. Firstly, only the blade is optimized using genetic algorithm with the meridional contour remained constant. The artificial neural network (ANN) techniques with the training sample data schemed according to design of experiment theory are adopted to construct the response relation between the blade design variables and the impeller performance. Then, based on the ANN approximated relation between the meridional contour design variables and impeller per- formance, the meridional contour is optimized. Fewer design variables and less calculation effort is required in this method that may be widely used in the optimization of three-dimension impellers. An optimized impeller in a mixed-flow pump, where the head and the efficiency are enhanced by 12.9% and 4.5% respectively, confirms the validity of this newly proposed method.
基金Project 50474003 supported by the National Natural Science Foundation of China
文摘A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning electron microscope (SEM) photos of particles were processed using an image.processing software (IPS) Photoshop. Taking the pixel as a fixed yardstick with the enlargement of the size of the particle image, the box-dimension and circumference-area (C-S) methods were used to calculate the FD of the surface profile of the particle. The FD of 1.2623 of the classic Koch curve is obtained, which approximates the true value of 1.2628. The complexities of the object's boundary and surface micro-topography are simulated successfully by a generator method.
基金Projects(51605361,51505357) supported by the National Natural Science Foundation of ChinaProjects(XJS16041,JB160411) supported by the Fundamental Research Funds for the Central Universities,China
文摘A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.
文摘The present paper is aimed to better illustrate the possible association between a particular extremely weak field, the air ions, and the human health response to this solicitation. Methods and instruments for this kind of analysis are here given in the form of a project: a "Ions meter", to reveal and characterize the properties of the air ions, and "APEC 300", an advanced electronic device, both instruments are with a HPR (high power of resolution). APEC 300 can give the response to the possible health effects by measurements of two electrocuteaneous parameter: the potential level and the impedance. The power of resolution of APEC 300 is much higher than that of other usual devices, for instance, the EAV ones (electroacupuncture), this instrument will be completely ready within few weeks.
基金Supported by the National Natural Science Foundation of China (No. 60672094)
文摘If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if the object goes beyond the limits of mean shift snake module operation in suc- cessive sequences, mean shift snake's nodes may also fall into the local minima in their moving to the new object position. This paper presents a motion compensation strategy by using particle filter; therefore a new Particle Filter Mean Shift Snake (PFMSS) algorithm is proposed which combines particle filter with mean shift snake to fulfill the estimation of the fast moving object contour. Firstly, the fast moving object is tracked by particle filter to create a coarse position which is used to initialize the mean shift algorithm. Secondly, the whole relevant motion information is used to compensate the snake's node positions. Finally, snake algorithm is used to extract the exact object contour and the useful information of the object is fed back. Some real world sequences are tested and the results show that the novel tracking method have a good performance with high accuracy in solving the fast moving problems in cluttered background.
文摘Recent studies have indicated that hypervelocity impacts by meteoroids and space debris can induce spacecraft anomalies. However, the basic physical process through which space debris impacts cause anomalies is not entirely clear. Currently, impact-generated plasma is thought to be the primary cause of electrical spacecraft anomalies, while the effects of impact-generated mechanical damage have rarely been researched. This paper presents new evidence showing that impact-generated mechanical damage strongly influences electrostatic discharge. Hypervelocity impact experiments were conducted in a plasma drag particle accelerator, using particles with diameters of 200–500 ?m and velocities of 2–7 km/s. The impact-generated mechanical damage on a specimen surface was measured by a stereoscopic microscope and 3D Profilometer and it indicated that microscopic irregularities around the impact crater could be responsible for local electric field enhancement. Furthermore, the influence of impact-generated mechanical damage on electrostatic discharge was simulated in an inverted potential gradient situation. The experimental results show that the electrostatic discharge voltage threshold was significantly reduced after the specimen was impacted by particles.