A new singularity extraction technique is presented to calculate accurately the singular integrals in Time Domain Electric Field Integral Equation (TDEFIE).In singularity extraction pro- cedure,through the aid of the ...A new singularity extraction technique is presented to calculate accurately the singular integrals in Time Domain Electric Field Integral Equation (TDEFIE).In singularity extraction pro- cedure,through the aid of the first order Taylor series of time base function including time-retardation,the singularity of the integrand can be removed.The surface current density and backscattered far-field response of a conducting cube illuminated by a Gaussian plane wave is com- puted using the presented technique.Comparisons are made with the results obtained by the Inverse Discrete Fourier Transform (IDFT) of the frequency domain and the results obtained by using Ve- chinski's time averaging technique,which demonstrate that the presented method with this new time domain singularity extraction technique to solve TDEFIE is very accurate and stable.展开更多
About ST Electronics Headquartered in Singapore, ST Electronics has almost 40 years of experience providing electronics, communications and ICT (information communications technologies) solutions to governments and co...About ST Electronics Headquartered in Singapore, ST Electronics has almost 40 years of experience providing electronics, communications and ICT (information communications technologies) solutions to governments and commercial enterprises worldwide.展开更多
The CRISPR-Cas system, especially the type II CRISPR-Cas9 system from Streptococcuspyogenes, has rapidly emerged as a popular genome editing tool. The development of Cas9 derivatives further expanded the toolbox of CR...The CRISPR-Cas system, especially the type II CRISPR-Cas9 system from Streptococcuspyogenes, has rapidly emerged as a popular genome editing tool. The development of Cas9 derivatives further expanded the toolbox of CRISPR- Cas9 based genome editing kit. However, therapeutic transla- tion of the CRISPR-Cas9 system in vivo is severely impeded by the absence of an appropriate delivery carrier. The complex- ity and high molecular weight of the CRISPR-Cas9 system, together with the physiological barriers for nucleus targeted cargo transportation have made it a huge challenge for in vivo therapeutic CRISPR-Cas9 delivery. Currently, the main stream carriers for systemic delivery of CRISPR-Cas9 are vi- ral based, such as adeno-associated virus. However, the safety concerns surrounding viral vectors call for the development of non-viral nanocarriers. In this review, we survey the recent advances in the development of non-viral delivery systems for CRISPR-Cas9. Challenges and future directions in this field are also discussed.展开更多
文摘A new singularity extraction technique is presented to calculate accurately the singular integrals in Time Domain Electric Field Integral Equation (TDEFIE).In singularity extraction pro- cedure,through the aid of the first order Taylor series of time base function including time-retardation,the singularity of the integrand can be removed.The surface current density and backscattered far-field response of a conducting cube illuminated by a Gaussian plane wave is com- puted using the presented technique.Comparisons are made with the results obtained by the Inverse Discrete Fourier Transform (IDFT) of the frequency domain and the results obtained by using Ve- chinski's time averaging technique,which demonstrate that the presented method with this new time domain singularity extraction technique to solve TDEFIE is very accurate and stable.
文摘About ST Electronics Headquartered in Singapore, ST Electronics has almost 40 years of experience providing electronics, communications and ICT (information communications technologies) solutions to governments and commercial enterprises worldwide.
基金supported by the grants from North Carolina TraCS, NIH’s Clinical and Translational Science Awards (CTSA, 1UL1TR001111) at UNC-CHSloan Fellowship Award from the Alfred P. Sloan Foundation
文摘The CRISPR-Cas system, especially the type II CRISPR-Cas9 system from Streptococcuspyogenes, has rapidly emerged as a popular genome editing tool. The development of Cas9 derivatives further expanded the toolbox of CRISPR- Cas9 based genome editing kit. However, therapeutic transla- tion of the CRISPR-Cas9 system in vivo is severely impeded by the absence of an appropriate delivery carrier. The complex- ity and high molecular weight of the CRISPR-Cas9 system, together with the physiological barriers for nucleus targeted cargo transportation have made it a huge challenge for in vivo therapeutic CRISPR-Cas9 delivery. Currently, the main stream carriers for systemic delivery of CRISPR-Cas9 are vi- ral based, such as adeno-associated virus. However, the safety concerns surrounding viral vectors call for the development of non-viral nanocarriers. In this review, we survey the recent advances in the development of non-viral delivery systems for CRISPR-Cas9. Challenges and future directions in this field are also discussed.