We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low...We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.展开更多
Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussio...Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.展开更多
We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV3Sb5 is a chiral flux phase.Considering the symmetry of the Kagome lattice,we show that the chiral flux phase has the low...We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV3Sb5 is a chiral flux phase.Considering the symmetry of the Kagome lattice,we show that the chiral flux phase has the lowest energy among those states which exhibit 2×2 charge orders observed experimentally.This state breaks the time-reversal symmetry and displays anomalous Hall effect.The explicit pattern of the density of state in real space is calculated.These results are supported by recent experiments and suggest that these materials are new platforms to investigate the interplay between topology,superconductivity and electron–electron correlations.展开更多
文摘We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.
文摘Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.
基金supported by the National Program on Key Basic Research Project of China(973 Program)(2017YFA0303100)the National Natural Science Foundation of China(11888101)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)the support from the start-up grant of IOP-CASsupported by the U.S.Department of Energy,Basic Energy Sciences Grant No.DE-FG02-99ER45747。
文摘We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV3Sb5 is a chiral flux phase.Considering the symmetry of the Kagome lattice,we show that the chiral flux phase has the lowest energy among those states which exhibit 2×2 charge orders observed experimentally.This state breaks the time-reversal symmetry and displays anomalous Hall effect.The explicit pattern of the density of state in real space is calculated.These results are supported by recent experiments and suggest that these materials are new platforms to investigate the interplay between topology,superconductivity and electron–electron correlations.