We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fer...We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms may be polynomial in the input size.展开更多
An alternative scheme is proposed for the generation of n-qubit W states of superconducting quantum interference devices (SQUID) in cavity QED. In this scheme, Raman coupling of two lower flux states of SQUID system...An alternative scheme is proposed for the generation of n-qubit W states of superconducting quantum interference devices (SQUID) in cavity QED. In this scheme, Raman coupling of two lower flux states of SQUID system is achieved via a microwave pulse and the cavity mode. Conditioned on no photon leakage from the cavity, the n-qubit W state can be generated whether the effective coupling parameters of the SQUID to cavity mode and classical microwave fields are the same or different. Our strictly numerical simulations of the time evolution of the system including decay show that the success probability of our scheme is almost unity and the interaction time is on the order of 10-9 s. The scheme can also be used to generate the Schrodinger cat states of multi-SQUID.展开更多
We demonstrate the efficient generation of coherent light in a four-level double-cascade atomic medium by continuous-wave low-intensity laser radiation. We derive the corresponding explicit analytical expressions for ...We demonstrate the efficient generation of coherent light in a four-level double-cascade atomic medium by continuous-wave low-intensity laser radiation. We derive the corresponding explicit analytical expressions for the generated four-wave mixing (FWM) field. Dependencies of the intensity of the generate FWM field on the propagation distance, on the input-wave intensity, and on the photon detuning are investigated. To conclude, we also give a brief discussion on the experimental realization of the proposed scheme.展开更多
A microwave photonic filter(MPF) with variable coefficient is proposed and demonstrated, which is constructed by a multi-wavelength fiber laser and Mach-Zehnder interferometer(MZI). Through changing the slope characte...A microwave photonic filter(MPF) with variable coefficient is proposed and demonstrated, which is constructed by a multi-wavelength fiber laser and Mach-Zehnder interferometer(MZI). Through changing the slope characteristics of Mach-Zehnder interference spectrum adjusted by optical variable delay line(OVDL), the conversion from phase modulation(PM) to intensity modulation(IM) is realized. The multi-wavelength fiber laser with Lyot-Sagnac optical filter has variable wavelength spacing. So the designed filter has a variable number of taps and tap weights. As a result, the tunable range of passband center frequency is 2.6 GHz. The reconfigurability of MPF can be also realized by adjusting the output of fiber laser.展开更多
The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases.Here,we report three-dimensional(3D)wave-steering capabilities enabled by topological b...The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases.Here,we report three-dimensional(3D)wave-steering capabilities enabled by topological boundary states at three different orders in a 3D phononic crystal with nontrivial bulk topology originated from the synergy of mirror symmetry of the unit cell and a non-symmorphic glide symmetry of the lattice.The multitude of topological states brings diverse possibilities of wave manipulations.Through judicious engineering of the boundary modes,we experimentally demonstrate two functionalities at different dimensions:2D negative refraction of sound wave enabled by a firstorder topological surface state with negative dispersion,and a 3D acoustic interferometer leveraging on second-order topological hinge states.Our work showcases that topological modes at different orders promise diverse wave steering applications across different dimensions.展开更多
We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their in...We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their induced excitations are compared. Also we consider the interplay of magneto-optical excitations, which leads to a constructive or destructive effect for the creation of magnons based on background excitations. The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions. Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.展开更多
基金The project supported by the 973 Program under Grant No. 2006CB921106, National Natural Science Foundation of China under Grant Nos. 10325521 and 60433050, and the Key Project 306020 and Science Research Fund of Doctoval Program of the Ministry of Education of China
文摘We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms may be polynomial in the input size.
基金supported by National Fundamental Research Program of China under Grant No.2005CB724508National Natural Science Foundation of China under Grant Nos.10575040,10634060,60478029,and 90503010
文摘An alternative scheme is proposed for the generation of n-qubit W states of superconducting quantum interference devices (SQUID) in cavity QED. In this scheme, Raman coupling of two lower flux states of SQUID system is achieved via a microwave pulse and the cavity mode. Conditioned on no photon leakage from the cavity, the n-qubit W state can be generated whether the effective coupling parameters of the SQUID to cavity mode and classical microwave fields are the same or different. Our strictly numerical simulations of the time evolution of the system including decay show that the success probability of our scheme is almost unity and the interaction time is on the order of 10-9 s. The scheme can also be used to generate the Schrodinger cat states of multi-SQUID.
文摘We demonstrate the efficient generation of coherent light in a four-level double-cascade atomic medium by continuous-wave low-intensity laser radiation. We derive the corresponding explicit analytical expressions for the generated four-wave mixing (FWM) field. Dependencies of the intensity of the generate FWM field on the propagation distance, on the input-wave intensity, and on the photon detuning are investigated. To conclude, we also give a brief discussion on the experimental realization of the proposed scheme.
基金supported by the National High Technology Research and Development Program of China(No.2013AA014200)the National Natural Science Foundation of China(No.61107052)+1 种基金the Natural Science Foundation of Tianjin in China(No.14JCYBJC16500)the Science and Technology Development Fund Project of Tianjin University(No.2012)
文摘A microwave photonic filter(MPF) with variable coefficient is proposed and demonstrated, which is constructed by a multi-wavelength fiber laser and Mach-Zehnder interferometer(MZI). Through changing the slope characteristics of Mach-Zehnder interference spectrum adjusted by optical variable delay line(OVDL), the conversion from phase modulation(PM) to intensity modulation(IM) is realized. The multi-wavelength fiber laser with Lyot-Sagnac optical filter has variable wavelength spacing. So the designed filter has a variable number of taps and tap weights. As a result, the tunable range of passband center frequency is 2.6 GHz. The reconfigurability of MPF can be also realized by adjusting the output of fiber laser.
基金supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2016-CRG5-2950KAUST Baseline Research Fund BAS/1/1626-01-01+3 种基金supported by the Hong Kong Research Grants Council (GRF 12302420, 12300419, ECS 22302718, CRF C6013-18G)the National Natural Science Foundation of China via the Excellent Young Scientist Scheme (Hong Kong & Macao) (#11922416)the Youth Program (#11802256)Hong Kong Baptist University (RC-SGT2/18-19/ SCI/006)。
文摘The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases.Here,we report three-dimensional(3D)wave-steering capabilities enabled by topological boundary states at three different orders in a 3D phononic crystal with nontrivial bulk topology originated from the synergy of mirror symmetry of the unit cell and a non-symmorphic glide symmetry of the lattice.The multitude of topological states brings diverse possibilities of wave manipulations.Through judicious engineering of the boundary modes,we experimentally demonstrate two functionalities at different dimensions:2D negative refraction of sound wave enabled by a firstorder topological surface state with negative dispersion,and a 3D acoustic interferometer leveraging on second-order topological hinge states.Our work showcases that topological modes at different orders promise diverse wave steering applications across different dimensions.
基金Supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB921604+4 种基金the National Natural Science Foundation of China under Grant Nos. 11004057, 10828408Educational Commission of Henan Province of China under Grant No. 01026631082the “Chen Guang” Project Supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant No.10CG24
文摘We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their induced excitations are compared. Also we consider the interplay of magneto-optical excitations, which leads to a constructive or destructive effect for the creation of magnons based on background excitations. The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions. Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.