To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptiv...To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.展开更多
Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wid...Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.展开更多
This paper introduces throughput-efficient wireless system based on an extension to binary phasemodulations,named extended binary phase shift keying(EBPSK),and the corresponding analysis ofpower spectra,especially the...This paper introduces throughput-efficient wireless system based on an extension to binary phasemodulations,named extended binary phase shift keying(EBPSK),and the corresponding analysis ofpower spectra,especially the extension to channel capacity are given.Importantly,a novel sequential es-timation and detection approach for this EBPSK system is proposed.The basic idea is to design a proba-bilistic approximation method for the computation of the maximum a posterior distribution via particle fil-tering method(PF).Subsequently,a new important function in PF is presented,so that the performanceof the detector has a great improvement.Finally,computer simulation illustrates that EBPSK system hasvery high transmission rate,and also the good performance of the proposed PF detector is demonstrated.展开更多
Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ...Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.展开更多
Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multi...Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.展开更多
Gas electron multiplier (GEM) as a novel gas detector,due to it’s simple structure,high performance,well compatibility etc.,is widely used in high-energy physics,nuclear physics and other fields.In this review,the pr...Gas electron multiplier (GEM) as a novel gas detector,due to it’s simple structure,high performance,well compatibility etc.,is widely used in high-energy physics,nuclear physics and other fields.In this review,the principle,recent achievements,developments and applications of GEM are mainly described.展开更多
Solid-state nanopores are generally considered as an indispensable element in the research field of fundamental ion transport and molecular sensing. The im- provement in fabrication and chemical modification of the so...Solid-state nanopores are generally considered as an indispensable element in the research field of fundamental ion transport and molecular sensing. The im- provement in fabrication and chemical modification of the solid-state nanopores remains increasingly updated. During the last decades, numerous works have been reported on the nanopore-based sensing applications. More and more new analytical methods using nanopore-based devices are emerging. In this review, we highlight the recent progress on the analytical methods for the interdisciplinary and fast- growing area of nanopore research. According to the dif- ferent types of the electrical readout, whether it is steady- state ionic current or transient current fluctuation, the nanopore-based sensing and analysis can be generally di- vided into two categories. For the first type, the electrical readout shows a stable blockade or reopening of the nanopore conductance in the presence of target analytes, termed steady-state analysis, including the conductance change, electrochemical analysis, and two-dimensional scanning and imaging. The other type is based on the transient fluctuation in the transmembrane ionic current, termed transient-state analysis, including the noise analysis, transient ion transport, and transverse tunneling current. The investigation of solid-state nanopores for chemical sensing is just in its infancy. For further research work, not only new nanopore materials and chemical modifications are needed, but also other non-electric-based sensing techniques should be developed. We will focus our future research in the framework of bio-inspired, smart, multiscale interfacial materials and extend the spirit of binary cooperative complementary nanomaterials.展开更多
基金Project(90820302) supported by the National Natural Science Foundation of ChinaProject(20110491272) supported by China Postdoctoral Science Foundation of China+2 种基金Project(2012QNZT060) supported by the Fundamental Research Fund for the Central Universities of ChinaProject(11B070) supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProject(2010-2012) supported by the Postdoctoral Science Foundation of Central South University,China
文摘To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.
基金supported by the National Natural Science Foundation of China under Grant No. 61201143the Scientific Research Foundation for Introduced Talent of Nanjing University of Aeronautics and Astronautics under Grant No. 56YAH13029
文摘Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.
基金Supported by the National Natural Science Foundation of China (No. 60872075)China Postdoctoral Science Foundation (No. 20080441015)
文摘This paper introduces throughput-efficient wireless system based on an extension to binary phasemodulations,named extended binary phase shift keying(EBPSK),and the corresponding analysis ofpower spectra,especially the extension to channel capacity are given.Importantly,a novel sequential es-timation and detection approach for this EBPSK system is proposed.The basic idea is to design a proba-bilistic approximation method for the computation of the maximum a posterior distribution via particle fil-tering method(PF).Subsequently,a new important function in PF is presented,so that the performanceof the detector has a great improvement.Finally,computer simulation illustrates that EBPSK system hasvery high transmission rate,and also the good performance of the proposed PF detector is demonstrated.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.
文摘Gas electron multiplier (GEM) as a novel gas detector,due to it’s simple structure,high performance,well compatibility etc.,is widely used in high-energy physics,nuclear physics and other fields.In this review,the principle,recent achievements,developments and applications of GEM are mainly described.
基金supported by the National Basic Research Program of China (2011CB935700)the National Natural Science Foundation of China (21103201, 11290163, 91127025, 21121001)The Chinese Academy of Sciences is gratefully acknowledged under the Key Research Program of the Chinese Academy of Sciences (KJZD-EW-M01)
文摘Solid-state nanopores are generally considered as an indispensable element in the research field of fundamental ion transport and molecular sensing. The im- provement in fabrication and chemical modification of the solid-state nanopores remains increasingly updated. During the last decades, numerous works have been reported on the nanopore-based sensing applications. More and more new analytical methods using nanopore-based devices are emerging. In this review, we highlight the recent progress on the analytical methods for the interdisciplinary and fast- growing area of nanopore research. According to the dif- ferent types of the electrical readout, whether it is steady- state ionic current or transient current fluctuation, the nanopore-based sensing and analysis can be generally di- vided into two categories. For the first type, the electrical readout shows a stable blockade or reopening of the nanopore conductance in the presence of target analytes, termed steady-state analysis, including the conductance change, electrochemical analysis, and two-dimensional scanning and imaging. The other type is based on the transient fluctuation in the transmembrane ionic current, termed transient-state analysis, including the noise analysis, transient ion transport, and transverse tunneling current. The investigation of solid-state nanopores for chemical sensing is just in its infancy. For further research work, not only new nanopore materials and chemical modifications are needed, but also other non-electric-based sensing techniques should be developed. We will focus our future research in the framework of bio-inspired, smart, multiscale interfacial materials and extend the spirit of binary cooperative complementary nanomaterials.