The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th...The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).展开更多
ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical len...ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical length of a plasma is linearly related to the microwave power applied and that the profile of noise power spectra varies significantly along the length of a plasma.展开更多
In this work, we constrain the spectral index nt of the primordial gravitational wave power spectrum in a universe with sterile neutrinos by using the Planck temperature data, the WMAP 9-year polarization data, the ba...In this work, we constrain the spectral index nt of the primordial gravitational wave power spectrum in a universe with sterile neutrinos by using the Planck temperature data, the WMAP 9-year polarization data, the baryon acoustic oscillation data, and the BICEP2 data. We call this model the ACDM+r+vs+nt model. The additional massive sterile neutrino species can significantly relieve the tension between the Planck and BICEP2 data, and thus can reduce the possible effects of this tension on the fit results of nt. To constrain the parameters of sterile neutrino, we also utilize the Hubble constant direct measurement data, the Planck Sunyaev-Zeldovich cluster counts data, the Planck CMB lensing data, and the cosmic shear data. We find that due to the fact that the BICEP2 data are most sensitive to the multipole ( - 150 corresponding to k - 0.01 Mpc^-1, there exists a strong anticorrelation between nt and r0.0o2 in the BICEP2 data, and this further results in a strongly blue-tilt spectrum. However, a slightly red-tilt tensor power spectrum is also allowed by the BICEP2 data in the region with larger value of r0.00z. By using the full data sets, we obtain mvisterile ^eff = 0.48 -0.13^+0.11 eV, Near = 3.73 -0.37^+0.34, and nt = 0.96 -0.63^ +0.48 for the ACDM+r+vs+nt model.展开更多
3 Summary and discussion In the generalized drift resonance theory[17],a characteristic signature of the ULF wave-particle interactions is the increasingly-tilted stripes in the particle energy spectrum.The phase diff...3 Summary and discussion In the generalized drift resonance theory[17],a characteristic signature of the ULF wave-particle interactions is the increasingly-tilted stripes in the particle energy spectrum.The phase difference across different energy channels is relatively small展开更多
基金financially supported by the National 973 Project(No.2014CB239006)the National Natural Science Foundation of China(No.41104069 and 41274124)the Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
文摘ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical length of a plasma is linearly related to the microwave power applied and that the profile of noise power spectra varies significantly along the length of a plasma.
基金supported by the National Natural Science Foundation of China (Grant No. 11175042)the National Ministry of Education of China (Grant No. N120505003)
文摘In this work, we constrain the spectral index nt of the primordial gravitational wave power spectrum in a universe with sterile neutrinos by using the Planck temperature data, the WMAP 9-year polarization data, the baryon acoustic oscillation data, and the BICEP2 data. We call this model the ACDM+r+vs+nt model. The additional massive sterile neutrino species can significantly relieve the tension between the Planck and BICEP2 data, and thus can reduce the possible effects of this tension on the fit results of nt. To constrain the parameters of sterile neutrino, we also utilize the Hubble constant direct measurement data, the Planck Sunyaev-Zeldovich cluster counts data, the Planck CMB lensing data, and the cosmic shear data. We find that due to the fact that the BICEP2 data are most sensitive to the multipole ( - 150 corresponding to k - 0.01 Mpc^-1, there exists a strong anticorrelation between nt and r0.0o2 in the BICEP2 data, and this further results in a strongly blue-tilt spectrum. However, a slightly red-tilt tensor power spectrum is also allowed by the BICEP2 data in the region with larger value of r0.00z. By using the full data sets, we obtain mvisterile ^eff = 0.48 -0.13^+0.11 eV, Near = 3.73 -0.37^+0.34, and nt = 0.96 -0.63^ +0.48 for the ACDM+r+vs+nt model.
基金supported by the National Natural Science Foundation of China(Grant Nos.41421003&41474140)
文摘3 Summary and discussion In the generalized drift resonance theory[17],a characteristic signature of the ULF wave-particle interactions is the increasingly-tilted stripes in the particle energy spectrum.The phase difference across different energy channels is relatively small