It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competit...It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competitiveness of this emerging technology in the manufacture of wrought aluminum alloy.High quality semi-solid slurry was produced,in which primary α(Al) presents in diameter of 62 μm and shape factor of 0.78 and features no eutectics entrapped.Higher forming pressure results in small grain size,improved shape factor and higher density.Especially,rheoforming can effectively reduce the occurrence of hot tearing.The average yield strength and elongation of the rheoformed samples in the T6 condition are 483 MPa and 8%,respectively.展开更多
The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experim...The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experimental results shows good quantitative agreement with Lifshitz-Slyozov-Wagner theory.The results show that the variation in shape factor and solid fraction is not significant,the average particle size increases with increasing holding time at the expense of the particle density.Ostwald repining is most likely the predominant growth mechanism in the AO-treated semi-solid slurry during rheocasting.The differences of coarsening occurred in rheocasting and partial re-melting process were also discussed.展开更多
This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement pa...This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement paste. Reactive aggregates use meta-sandstone from eastern Taiwan and Pyrex glass. Non-reactive aggregates use siliceous sand. The results show that the dissolved amount of SiO2 is lower when the reactive aggregates are immersed in an 80 ℃1 N LiOH'H20 solution than in NaOH and KOH solutions. The reduced amounts of OH and Li+ in the solution are also higher than those in the NaOH and KOH solutions. These results reveal that reactive SiO2 can react with LiOH to form a reactant with low water solubility. When the powder of the cement paste is immersed in an 80 ℃ 1 N LiOH-H2O solution, the amounts of free Na+ and K+ in the solution are higher than those in water. The increased amount increases with the duration of immersion. The amount of Li+ in the solution also decreases with the duration of immersion. These results reveal that Li+ can substitute Na+ and K+ that are unified in cement paste, which indicates that ASR can be prevented with the existence of Li+.展开更多
In recent years, the need for low energy materials has become increasingly important. With government targets aiming to reduce carbon emissions by 80% by 2050, and the construction industry being responsible for 50% o...In recent years, the need for low energy materials has become increasingly important. With government targets aiming to reduce carbon emissions by 80% by 2050, and the construction industry being responsible for 50% of the UK's carbon emissions, it is of vital importance that positive changes are made. One of these changes is to reduce the carbon footprint of the materials used in construction. Lime mortar has been used for centuries, but since the arrival of cement, its use in modern construction has diminished, in part due to having lower compressive strengths than cement mortar. Air lime mortar, in particular, can be categorised as low energy due to the reabsorption of a significant amount of COE during the setting process: carbonation. The current study focuses on the impact of different types of aggregate (limestone and silicate) on air lime mortar strength. Previous research has found that higher strengths can be achieved with the use of limestone aggregate, but little is known about the reasons why. The research presented here looks at a microstructural analysis through use of SEM (scanning electron microscopy) in order to determine reasons behind the strength differences. At early stages of curing, there are clear differences at the interface of binder and aggregate.展开更多
p-Nitrophenylphosphate (PNPP) is usually employed as the substrate for enzyme-linked immunosorbent assays, p-Nitrophenol (PNP), the product of PNPP, with the catalyst alkaline phosphatase (ALP), will passivate a...p-Nitrophenylphosphate (PNPP) is usually employed as the substrate for enzyme-linked immunosorbent assays, p-Nitrophenol (PNP), the product of PNPP, with the catalyst alkaline phosphatase (ALP), will passivate an electrode, which limits applications in electrochemical analysis. A novel anti-passivation ink used in the preparation of a graphene/ionic liquid/chitosan composited (rGO/IL/Ghi) electrode is proposed to solve the problem. The anti-passivation electrode was fabricated by directly writing the graphene-ionic liquid-chitosan composite on a single-side conductive gold strip. A glassy carbon electrode, a screen-printed electrode, and a graphene-chitosan composite-modified screen-printed electrode were investigated for comparison. Scanning electron microscopy was used to characterize the surface structure of the four different electrodes and cyclic voltammetry was carried out to compare their performance. The results showed that the rGO/IL/Ghi electrode had the best performance according to its low peak potential and large peak current. Amperometdc responses of the different electrodes to PNP proved that only the rGO/IL/Chi electrode was capable of anti-passivation. The detection of cardiac troponin I was used as a test example for electrochemical immunoassay. Differential pulse voltammetry was performed to detect cardiac troponin I and obtain a calibration curve. The limit of detection was 0.05 ng/ml.展开更多
Printing is a method of additive manufacturing that can reduce material costs and environmental contamination during the fabrication process.Ag ink is commonly used in printed electronics,such as interconnects,inducto...Printing is a method of additive manufacturing that can reduce material costs and environmental contamination during the fabrication process.Ag ink is commonly used in printed electronics,such as interconnects,inductors,and antennas.However,the high cost of noble Ag restricts its massive applications.To reduce the cost of the state-of-the-art Ag ink and realize large-scale manufacturing,we develop a molecule-bridged graphene/Ag(MB-G/A)composite to produce highly conductive and cost-effective paperbased electronics.Graphene can be used to substitute part of Ag nanoparticles to reduce costs,form a conducive percolation network,and retain a reasonable level of conductivity.We adopt cysteamine as a molecular linker,because it anchors on the surface of graphene via the diazonium reaction.Additionally,the thiol functional group on the other end of cysteamine can bond to a Ag atom,forming a molecular bridge between graphene and Ag and promoting electron transport between Ag and graphene.As a result,the maximum conductivity of MB-G/A inks can reach 2.0×10^(5)S m^(−1),enabling their successful application in various printable electronics.In addition,the optimum MB-G/A ink costs less than half as much as pure Ag inks,showing the great potential of MB-G/A ink in commercial electronic devices.展开更多
基金Projects(50804023,50474007) supported by the National Natural Science Foundation of ChinaProject(GJJ08006) supported by the Jiangxi Provincial Education Department,China
文摘It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competitiveness of this emerging technology in the manufacture of wrought aluminum alloy.High quality semi-solid slurry was produced,in which primary α(Al) presents in diameter of 62 μm and shape factor of 0.78 and features no eutectics entrapped.Higher forming pressure results in small grain size,improved shape factor and higher density.Especially,rheoforming can effectively reduce the occurrence of hot tearing.The average yield strength and elongation of the rheoformed samples in the T6 condition are 483 MPa and 8%,respectively.
基金Project (50804023) supported by the National Natural Science Foundation of ChinaProject (205084) supported by the Key Project of Science and Technology Research of Ministry of Education of China
文摘The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experimental results shows good quantitative agreement with Lifshitz-Slyozov-Wagner theory.The results show that the variation in shape factor and solid fraction is not significant,the average particle size increases with increasing holding time at the expense of the particle density.Ostwald repining is most likely the predominant growth mechanism in the AO-treated semi-solid slurry during rheocasting.The differences of coarsening occurred in rheocasting and partial re-melting process were also discussed.
文摘This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement paste. Reactive aggregates use meta-sandstone from eastern Taiwan and Pyrex glass. Non-reactive aggregates use siliceous sand. The results show that the dissolved amount of SiO2 is lower when the reactive aggregates are immersed in an 80 ℃1 N LiOH'H20 solution than in NaOH and KOH solutions. The reduced amounts of OH and Li+ in the solution are also higher than those in the NaOH and KOH solutions. These results reveal that reactive SiO2 can react with LiOH to form a reactant with low water solubility. When the powder of the cement paste is immersed in an 80 ℃ 1 N LiOH-H2O solution, the amounts of free Na+ and K+ in the solution are higher than those in water. The increased amount increases with the duration of immersion. The amount of Li+ in the solution also decreases with the duration of immersion. These results reveal that Li+ can substitute Na+ and K+ that are unified in cement paste, which indicates that ASR can be prevented with the existence of Li+.
文摘In recent years, the need for low energy materials has become increasingly important. With government targets aiming to reduce carbon emissions by 80% by 2050, and the construction industry being responsible for 50% of the UK's carbon emissions, it is of vital importance that positive changes are made. One of these changes is to reduce the carbon footprint of the materials used in construction. Lime mortar has been used for centuries, but since the arrival of cement, its use in modern construction has diminished, in part due to having lower compressive strengths than cement mortar. Air lime mortar, in particular, can be categorised as low energy due to the reabsorption of a significant amount of COE during the setting process: carbonation. The current study focuses on the impact of different types of aggregate (limestone and silicate) on air lime mortar strength. Previous research has found that higher strengths can be achieved with the use of limestone aggregate, but little is known about the reasons why. The research presented here looks at a microstructural analysis through use of SEM (scanning electron microscopy) in order to determine reasons behind the strength differences. At early stages of curing, there are clear differences at the interface of binder and aggregate.
基金Project supported by the National Natural Science Foundation of China(No.31571918)
文摘p-Nitrophenylphosphate (PNPP) is usually employed as the substrate for enzyme-linked immunosorbent assays, p-Nitrophenol (PNP), the product of PNPP, with the catalyst alkaline phosphatase (ALP), will passivate an electrode, which limits applications in electrochemical analysis. A novel anti-passivation ink used in the preparation of a graphene/ionic liquid/chitosan composited (rGO/IL/Ghi) electrode is proposed to solve the problem. The anti-passivation electrode was fabricated by directly writing the graphene-ionic liquid-chitosan composite on a single-side conductive gold strip. A glassy carbon electrode, a screen-printed electrode, and a graphene-chitosan composite-modified screen-printed electrode were investigated for comparison. Scanning electron microscopy was used to characterize the surface structure of the four different electrodes and cyclic voltammetry was carried out to compare their performance. The results showed that the rGO/IL/Ghi electrode had the best performance according to its low peak potential and large peak current. Amperometdc responses of the different electrodes to PNP proved that only the rGO/IL/Chi electrode was capable of anti-passivation. The detection of cardiac troponin I was used as a test example for electrochemical immunoassay. Differential pulse voltammetry was performed to detect cardiac troponin I and obtain a calibration curve. The limit of detection was 0.05 ng/ml.
基金financially supported by Hong Kong Scholars Program(XJ2019025)The Hong Kong Polytechnic University(CD42)Shenzhen Science and Technology Innovation Commission(JCYJ20180507183424383)。
文摘Printing is a method of additive manufacturing that can reduce material costs and environmental contamination during the fabrication process.Ag ink is commonly used in printed electronics,such as interconnects,inductors,and antennas.However,the high cost of noble Ag restricts its massive applications.To reduce the cost of the state-of-the-art Ag ink and realize large-scale manufacturing,we develop a molecule-bridged graphene/Ag(MB-G/A)composite to produce highly conductive and cost-effective paperbased electronics.Graphene can be used to substitute part of Ag nanoparticles to reduce costs,form a conducive percolation network,and retain a reasonable level of conductivity.We adopt cysteamine as a molecular linker,because it anchors on the surface of graphene via the diazonium reaction.Additionally,the thiol functional group on the other end of cysteamine can bond to a Ag atom,forming a molecular bridge between graphene and Ag and promoting electron transport between Ag and graphene.As a result,the maximum conductivity of MB-G/A inks can reach 2.0×10^(5)S m^(−1),enabling their successful application in various printable electronics.In addition,the optimum MB-G/A ink costs less than half as much as pure Ag inks,showing the great potential of MB-G/A ink in commercial electronic devices.