The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure wer...The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.展开更多
Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were c...Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermal gravity-DTG, brunauer emmett teller, and NHa-temperature programmed desorption. The results showed that the bmim-PW12 samples were crystal and maintained intact Keggin structure. The organic parts of those samples were partly decomposed at a temperature more than 350 ℃. The sample annealed at 400 ℃ exhibited nano-porous structure, strong acidity, and excellent catalytic activity on the esterification of n-butanol with acetic acid. The higher ester yield was obtained when the mass ratio of catalyst over the reactants amount was 5% for bmim-PW12 catalyst annealed at 400 ℃.展开更多
AIM:To evaluate the methylation status of CDH1, FHIT, MTAP and PLAGL1 promoters and the association of these findings with clinico-pathological characteristics.METHODS: Methylation-specific PCR (MSP) assay was per...AIM:To evaluate the methylation status of CDH1, FHIT, MTAP and PLAGL1 promoters and the association of these findings with clinico-pathological characteristics.METHODS: Methylation-specific PCR (MSP) assay was performed in 13 nonneoplastic gastric adenocarcinorna, 30 intestinal-type gastric adenocarcinorna and 35 diffuse-type gastric adenocarcinorna samples from individuals in Northern Brazil. Statistical analyses were performed using the chi-square or Fisher's exact test to assess associations between rnethylation status and clinico-pathological characteristics.RESULTS: Hypermethylation frequencies of CDH1, FHIT, MTAPand PLAGL1 promoter were 98.7%, 53.9%, 23.1% and 29.5%, respectively. Hyperrnethylation of three or four genes revealed a significant association with diffuse-type gastric cancer compared with nonneoplastic cancer. A higher hyperrnethylation frequency was significantly associated with H pylori infection in gastric cancers, especially with diffuse-type. Cancer samples without lymph node metastasis showed a higher FHIT hypermethylation frequency. MTAP hypermethylation was associated with H pylori in gastric cancer samples, as well as with diffuse-type compared with intestinal-type. In diffuse-type, MTAP hypermethylation was associated with female gender.CONCLUSION: Our findings show differential gene methylation in tumoral tissue, which allows us to conclude that hypermethylation is associated with gastric carcinogenesis. MTAP promoter hypermethylation can be characterized as a marker of diffuse-type gastric cancer, especially in women and may help in diagnosis, prognosis and therapies. The H pylori infectious agent was present in 44.9% of the samples. This infection may be correlated with the carcinogenic process through the gene promoter hypermethylation, especially the MTAP promoter in diffuse-type. A higher H pylori infection in diffuse-type may be due to greater genetic predisposition.展开更多
AIM: To study the characteristics of mismatch repair gene mutation of Chinese hereditary non-polyposis colorectal cancer (HNPCC) and hMLH1 gene promoter methylation, and to improve the screening strategy and explore t...AIM: To study the characteristics of mismatch repair gene mutation of Chinese hereditary non-polyposis colorectal cancer (HNPCC) and hMLH1 gene promoter methylation, and to improve the screening strategy and explore the pertinent test methods. METHODS: A systematic analysis of 30 probands from HNPCC families in the north of China was performed by immunohistochemistry, microsatellite instability (MSI), gene mutation and methylation detection. RESULTS: High frequency microsatellite instability occurred in 25 probands (83.3%) of HNPCC family. Loss of hMLH1 and hMSH2 protein expression accounted for 88% of all microsatellite instability. Pathogenic muta-tion occurred in 14 samples and 3 novel mutational sites were discovered. Deletion of exons 1-6, 1-7 and 8 of hMSH2 was detected in 3 samples and no large fragment deletion was found in hMLH1. Of the 30 probands, hMLH1 gene promoter methylation occurred in 3 probands. The rate of gene micromutation detection combined with large fragment deletion detection was 46.7%-56.7%. The rate of the two methods in combination with methylation detection was 63.3%. CONCLUSION: Scientific and rational detection strategy can improve the detection rate of HNPCC. Based on traditional molecular genetics and combined with epigenetics, multiple detection methods can accurately diagnose HNPCC.展开更多
Colorectal cancer (CRC) is caused by a series of genetic or epigenetic changes, and in the last decade there has been an increased awareness that there are multiple forms of colorectal cancer that develop through di...Colorectal cancer (CRC) is caused by a series of genetic or epigenetic changes, and in the last decade there has been an increased awareness that there are multiple forms of colorectal cancer that develop through different pathways. Microsatellite instability is involved in the genesis of about 15% of sporadic colorectal cancers and most of hereditary nonpolyposis cancers. Tumors with a high frequency of microsatellite instability tend to be diploid, to possess a mucinous histology, and to have a surrounding lymphoid reaction. They are more prevalent in the proximal colon and have a fast pass from polyp to cancer. Nevertheless, they are associated with longer survival than stage-matched tumors with microsateUite stability. Resistance of colorectal cancers with a high frequency of microsatellite instability to 5-fluorouracilbased chemotherapy is well established. Silencing the MLH1 gene expression by its promoter methylation stops the formation of MLH1 protein, and prevents the normal activation of the DNA repair gene. This is an important cause for genomic instability and cell proliferation to the point of colorectal cancer formation. Better knowledge of this process will have a huge impact on colorectal cancer management, prevention, treatment and prognosis.展开更多
AIM:To investigate the promoter methylation status and mRNA expression of DKK-3 and WIF-1 gene in hepatocellular carcinoma(HCC).METHODS:DKK-3 and WIF-1 acted as Wnt-antagonists and tumor suppressors,but hypermethylati...AIM:To investigate the promoter methylation status and mRNA expression of DKK-3 and WIF-1 gene in hepatocellular carcinoma(HCC).METHODS:DKK-3 and WIF-1 acted as Wnt-antagonists and tumor suppressors,but hypermethylation of the gene promoter and low mRNA expression activated Wnt signaling aberrantly and induced the development of HCC.Methylation status of the DKK-3 and WIF-1 gene promoter was investigated using methylation specific polymerase chain reaction(PCR) in tumor and adjacent non-cancerous tissues from 33 HCC patients and 20 normal liver tissues served as control.The expression of DKK-3 and WIF-1 mRNA was also determined by real-time quantitative reverse transcriptase PCR.The relationship between methylation,mRNA expression,and clinical data,as well as methylation and mRNA expression of the two genes were analyzed.RESULTS:The methylation of DKK-3 and WIF-1 genes in HCC increased significantly compared with adjacent non-cancerous tissues and normal control tissues(χ2 =7.79,P < 0.05;χ2 = 4.89,P < 0.05),and no significant difference in methylation between adjacent non-cancerous tissues and normal control tissues was observed.In HCC tissues,significant differences in the DKK-3 promoter methylation were observed in age and cirrhosis,and significant differences of the WIF-1 promoter methylation were observed in HBsAg and cirrhosis.The average expression of DKK-3 mRNA in HCC and adjacent non-cancerous tissues was increased significantly compared with normal control tissues.The average expression of WIF-1 mRNA showed no significant difference among the three tissues.The mRNA expression of DKK-3 gene in HCC was decreased as the pathological grade increased.CONCLUSION:The aberrant promoter methylation and decreased expression of DKK-3 and WIF-1 may be an important mechanism in HCC,and may be a far-reaching significance in early diagnosis and therapy of HCC.展开更多
AIM: To assess the predictive value of the insulinlike growth factor 2 (Igf2) methylation profile for the occurrence of Hepatocellular Carcinoma (HCC) in hepatitis C (HCV) cirrhosis. METHODS: Patients with: (1) biopsy...AIM: To assess the predictive value of the insulinlike growth factor 2 (Igf2) methylation profile for the occurrence of Hepatocellular Carcinoma (HCC) in hepatitis C (HCV) cirrhosis. METHODS: Patients with: (1) biopsy-proven compensated HCV cirrhosis; (2) available baseline frozen liver sample; (3) absence of detectable HCC; (4) regular screening for HCC; (5) informed consent for genetic analysis were studied. After DNA extraction from liver samples and bisulfite treatment, unbiased PCR and DHPLC analysis were performed for methylation analysis at the Igf2 locus. The predictive value of the Igf2 methylation profile for HCC wasassessed by Kaplan-Meier and Cox methods. RESULTS: Among 94 included patients, 20 developed an HCC during follow-up (6.9 ± 3.2 years). The methylation profile was hypomethylated, intermediate and hypermethylated in 13, 64 and 17 cases, respectively. In univariate analysis, two baseline parameters were associated with the occurrence of HCC: age (P = 0.01) and prothrombin (P = 0.04). The test of linear tendency between the three ordered levels of Igf2 methylation and probability of HCC occurrence was significant (Log Rank, P = 0.043; Breslow, P = 0.037; Tarone-Ware, P = 0.039). CONCLUSION: These results suggest that hypomethylation at the Igf2 locus in the liver could be predictive for HCC occurrence in HCV cirrhosis.展开更多
Wnt5a is a secreted Wnt ligand that plays a critical role in cellular pathways and inflammatory diseases.The WNT5A gene encodes two protein isoforms,Wnt5a-long and Wnt5a-short,which differ based on different promoter ...Wnt5a is a secreted Wnt ligand that plays a critical role in cellular pathways and inflammatory diseases.The WNT5A gene encodes two protein isoforms,Wnt5a-long and Wnt5a-short,which differ based on different promoter methylation and have distinct functions.However,the mechanisms of the promoter methylation are unclear.Depending on the extent of promoter methylation,Wnt5a exerts both anti-inflammatory and proinflammatory effects in inflammatory diseases,which may be involved in different Wnt5a isoforms.Therefore,the Wnt5a isoforms may be potential diagnostic markers for inflammatory diseases and the mechanisms of the WNT5A gene promoter methylation need to be further investigated.展开更多
AIM: To investigate the feasibility of detecting methylated fecal DNA as a screening tool for colorectal carcinoma (CRC) and precancerous lesions. METHODS: Methylated secreted frizzled-related protein gene 2 (SF...AIM: To investigate the feasibility of detecting methylated fecal DNA as a screening tool for colorectal carcinoma (CRC) and precancerous lesions. METHODS: Methylated secreted frizzled-related protein gene 2 (SFRP2), hyperplastic polyposis protein gene (HPP1) and O6-methylguanine-DNA methyltransferase gene (MGMT) in stools from 52 patients with CRC, 35 patients with benign colorectal diseases and 24 normal individuals were analyzed using methylation-specific PCR. RESULTS: Methylated SFRP2, HPP1 and MGMT were detected in 94.2%, 71.2%, 48.1% of CRC patients and 52.4%, 57.1%, 28.6% of adenoma patients, respectively. The overall prevalence of fecal DNA with at least one methylated gene was 96.2% and 81.8% in patients with CRC and precancerous lesions, respectively. In contrast, only one of the 24 normal individuals revealed methylated DNA. These results indicated a 93.7% sensitivity and a 77.1% specificity of the assay for detecting CRC and precancerous lesions. CONCLUSION: IVlethylation testing of fecal DNA using a panel of epigenetic markers may be a simple and promising non-invasive screening method for CRC and precancerous lesions.展开更多
Dimethylation of histone H3 lysine 9 (H3K9me2) is an important epigenetic mark associated with transcription repression. Here, we identified PHF8, a JmjC-domain-containing protein, as a histone demethylase specific ...Dimethylation of histone H3 lysine 9 (H3K9me2) is an important epigenetic mark associated with transcription repression. Here, we identified PHF8, a JmjC-domain-containing protein, as a histone demethylase specific for this repressing mark. Recombinant full-length wild type protein could remove methylation from H3K9me2, but mutation of a conserved histidine to alanine H247A abolished the demethylase activity. Overexpressed exogenous PHF8 was colocalized with B23 staining. Endogenous PHF8 was also colocalized with B23 and fibrillarin, two well-established nucleolus proteins, suggesting that PHF8 is localized in the nucleolus and may regulate rRNA transcription. Indeed, PHF8 bound to the promoter region of the rDNA gene. Knockdown of PHF8 reduced the expression of rRNA, and overexpression of the gene resulted in upregulation of rRNA transcript. Concomitantly, H3K9me2 level was elevated in the promoter region of the rDNA gene in PHF8 knockdown cells and reduced significantly when the wild type but not the catalytically inactive H247A mutant PHF8 was overexpressed. Thus, our study identified a histone demethylase for H3K9me2 that regulates rRNA transcription.展开更多
Histone lysine methylation can be removed by JmjC domain-containing proteins in a sequence- and methylationstate-specific manner. However, how substrate specificity is determined and how the enzymes are regulated were...Histone lysine methylation can be removed by JmjC domain-containing proteins in a sequence- and methylationstate-specific manner. However, how substrate specificity is determined and how the enzymes are regulated were largely unknown. We recently found that ceKDM7A, a PHD- and JmjC domain-containing protein, is a histone demethylase specific for H3K9me2 and H3K27me2, and the PHD finger binding to H3K4me3 guides the demethylation activity in vivo. To provide structural insight into the molecular mechanisms for the enzymatic activity and the function of the PHD finger, we solved six crystal structures of the enzyme in apo form and in complex with single or two peptides containing various combinations of H3K4me3, H3K9me2, and H3K27me2 modifications. The structures indicate that H3Kgme2 and H3K27me2 interact with ceKDMTA in a similar fashion, and that the peptide-binding specificity is determined by a network of specific interactions. The geometrical measurement of the structures also revealed that H3K4me3 associated with the PHD finger and H3K9me2 bound to the JmjC domain are from two separate molecules, suggesting a trans-histone peptide-binding mechanism. Thus, our systemic structural studies reveal not only the substrate recognition by the catalytic domain but also more importantly, the molecular mechanism of dual specifieity of ceDKM7A for both H3K9me2 and H3K27me2.展开更多
Brain tumor-initiating cells (BTICs) have been enriched using antibodies against the cell surface protein CD133; however, the biological relevance and the regulatory mechanism of CD133 expression in human gliomas ar...Brain tumor-initiating cells (BTICs) have been enriched using antibodies against the cell surface protein CD133; however, the biological relevance and the regulatory mechanism of CD133 expression in human gliomas are not yet understood. In this study, we initially demonstrated that CD133 was overexpressed in high-grade human glioblastomas where CD133-positive cells were focally observed as a micro-cluster. In addition, CD133 transcripts with exon 1A, 1B, or 1C were predominantly expressed in glioblastomas. To elucidate the mechanism regulating this aberrant expression of CD133, three proximal promoters (P1, P2, and P3) containing a CpG island were isolated. In U251MG and T98G glioblastoma cells, the P1 region flanking exon 1A exhibited the highest activity among the three promoters, and this activity was significantly inactivated by in vitro methylation. After treatment with the demethylating agent 5-azacytidine and/or the histone deacetylase inhibitor valproic acid, the expression level of CD133 mRNA was significantly restored in glioma cells. Importantly, hypomethylation of CpG sites within the P1, P2, and P3 regions was observed by bisulfite sequencing in human glioblastoma tissues with abundant CD133 mRNA. Taken together, our results indicate that DNA hypomethylation is an important determinant of CD133 expression in glioblastomas, and this epigenetic event may be associated with the development of BTICs expressing CD133.展开更多
Transformation of lignin into high-value chemicals is hampered by the complexity of monomers obtained from lignin depolymerization. Here we report a strategy, composed of hy-dro-demethoxylation and de-alkylation react...Transformation of lignin into high-value chemicals is hampered by the complexity of monomers obtained from lignin depolymerization. Here we report a strategy, composed of hy-dro-demethoxylation and de-alkylation reactions, that is able to chemically converge various lig-nin-derived phenolic monomers into phenol in a single-step. Using 2-methoxy-4-propylphenol as a model compound, Pt/C exhibited the best performance in hydro-demethoxylation reaction afford-ing 80% 4-propylphenol from 2-methoxy-4-propylphenol, while H-ZSM-5 was identified as the most suitable catalyst for de-alkylation, achieving 83% yield of phenol from 4-propylphenol. Since the two catalysts operate under compatible conditions, combining the two catalysts to simultane-ously promote both hydro-demethoxylation and de-alkylation reactions was achieved. Configura-tion of how to organize the catalysts is a critical parameter, where the physical mixture of the two was most effective, providing over 60% phenol from 2-methoxy-4-propylphenol in a single-step.展开更多
The alkylation of toluene with 1,3-pentadiene to produce pentyltoluene was carded out to obtain 2,6-dimethylnaphalene, which is an important intermediate during the production of 2,6-naphthalene dicarboxylic acid. Bas...The alkylation of toluene with 1,3-pentadiene to produce pentyltoluene was carded out to obtain 2,6-dimethylnaphalene, which is an important intermediate during the production of 2,6-naphthalene dicarboxylic acid. Based on our previous work using anhydrous AlCl3 as catalyst, [bupy]BF4-AlCl3 ionic liquids were employed to catalyze the reaction of 1,3-pentadiene with toluene. The experimental results show that [bupy]BF4-AlCl3 ionic liquids are suitable for the reaction especially when the molar ratio of AlCl3 to [bupy]BF4 is 1.75 : 1, and the reaction could proceed at the temperature as low as 0℃. It could be as active as pure AlCl3, but much more environmentally friendly.展开更多
Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a dis...Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a distinct role in these two different preparation procedures of the catalyst.Ball milling performed after the cesium modification has a strong influence on the Cs/X structure and acid-base properties,which results in the enhancement of the catalytic performance for side-chain methylation of toluene with methanol.Detailed studies revealed that ball milling intensified the interactions between oxides and molecular sieves,which not only increased the dispersion of the Cs species but also generated some weaker basic centers.It is proposed that the new basic centers could be Si-O-Cs and Al-O-Cs,which are produced by breaking of the Si-O-Al bonds of the zeolite framework under the synergetic effect of ball milling and alkali treatment.These new active sites may help to promote the side-chain methylation reaction.However,excessive ball milling will lead to the vanishing of zeolite micropores,thus deactivating side-chain methylation activity,which indicates that microporosity plays a key role in side-chain methylation and individual basic centers cannot catalyze this reaction.展开更多
Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- c...Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- crystallization method is used to synthesize hierarchically porous zeolite ZSM-5 with varied Si/AI malar ratios. X-ray diffraction (XRD), N2 physisorption, NH3-temperature programmed desorption (TPD), scanning electronic microscopic (SEM) measurement and Fourier transform infrared (FT-IR) are employed to characterize the struc- ture and acidity of both hierarchically porous zeolites and their conventional counterparts. The method is found to be applicable to ZSM-5 with molar ratios of Si/A1 from 20 to 180. The ZSM-5 zeolites are used as catalysts for benzene methylation at 460 ℃ to investigate the effect of additional porosity and Si/A1 ratios. At low Si/AI ratios, the benzene conversions over conventional and hierarchical ZSM-5 are close, and selectivity to toluene is high over hierarchical ZSM-5. It is found that hierarchical porosity markedly enhances the utility of zeolite and the se- lectivity towards xylenes via improved mass transport at higher Si/Al ratios. Under an optimized hierarchical ZSM-5 catalvst, xvlene selectivity reaches 34.9% at a Si/AI ratio of 180.展开更多
基金Projects(51102285,81170912)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of State Key Laboratory of Powder Metallurgy,China
文摘The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.
文摘Fhnctionalized ionic liquid samples (bmim-PW12) were synthesized by 1-butyl-3-methyl- imidazolium bromide (bmimBr) and 12-phosphotungstic heteropolyacid (PW12). The samples were annealed at 100-450 ℃ and were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermal gravity-DTG, brunauer emmett teller, and NHa-temperature programmed desorption. The results showed that the bmim-PW12 samples were crystal and maintained intact Keggin structure. The organic parts of those samples were partly decomposed at a temperature more than 350 ℃. The sample annealed at 400 ℃ exhibited nano-porous structure, strong acidity, and excellent catalytic activity on the esterification of n-butanol with acetic acid. The higher ester yield was obtained when the mass ratio of catalyst over the reactants amount was 5% for bmim-PW12 catalyst annealed at 400 ℃.
基金Supported by Fundao de Amparo à Pesquisa do Estado de So Paulo, Coordenao de Aperfeioamento de Pessoal de Nível Superior and Conselho Nacional de Desenvolvimento Científico e Tecnológico
文摘AIM:To evaluate the methylation status of CDH1, FHIT, MTAP and PLAGL1 promoters and the association of these findings with clinico-pathological characteristics.METHODS: Methylation-specific PCR (MSP) assay was performed in 13 nonneoplastic gastric adenocarcinorna, 30 intestinal-type gastric adenocarcinorna and 35 diffuse-type gastric adenocarcinorna samples from individuals in Northern Brazil. Statistical analyses were performed using the chi-square or Fisher's exact test to assess associations between rnethylation status and clinico-pathological characteristics.RESULTS: Hypermethylation frequencies of CDH1, FHIT, MTAPand PLAGL1 promoter were 98.7%, 53.9%, 23.1% and 29.5%, respectively. Hyperrnethylation of three or four genes revealed a significant association with diffuse-type gastric cancer compared with nonneoplastic cancer. A higher hyperrnethylation frequency was significantly associated with H pylori infection in gastric cancers, especially with diffuse-type. Cancer samples without lymph node metastasis showed a higher FHIT hypermethylation frequency. MTAP hypermethylation was associated with H pylori in gastric cancer samples, as well as with diffuse-type compared with intestinal-type. In diffuse-type, MTAP hypermethylation was associated with female gender.CONCLUSION: Our findings show differential gene methylation in tumoral tissue, which allows us to conclude that hypermethylation is associated with gastric carcinogenesis. MTAP promoter hypermethylation can be characterized as a marker of diffuse-type gastric cancer, especially in women and may help in diagnosis, prognosis and therapies. The H pylori infectious agent was present in 44.9% of the samples. This infection may be correlated with the carcinogenic process through the gene promoter hypermethylation, especially the MTAP promoter in diffuse-type. A higher H pylori infection in diffuse-type may be due to greater genetic predisposition.
基金Supported by Beijing Natural Science Foundation, No. 7062064
文摘AIM: To study the characteristics of mismatch repair gene mutation of Chinese hereditary non-polyposis colorectal cancer (HNPCC) and hMLH1 gene promoter methylation, and to improve the screening strategy and explore the pertinent test methods. METHODS: A systematic analysis of 30 probands from HNPCC families in the north of China was performed by immunohistochemistry, microsatellite instability (MSI), gene mutation and methylation detection. RESULTS: High frequency microsatellite instability occurred in 25 probands (83.3%) of HNPCC family. Loss of hMLH1 and hMSH2 protein expression accounted for 88% of all microsatellite instability. Pathogenic muta-tion occurred in 14 samples and 3 novel mutational sites were discovered. Deletion of exons 1-6, 1-7 and 8 of hMSH2 was detected in 3 samples and no large fragment deletion was found in hMLH1. Of the 30 probands, hMLH1 gene promoter methylation occurred in 3 probands. The rate of gene micromutation detection combined with large fragment deletion detection was 46.7%-56.7%. The rate of the two methods in combination with methylation detection was 63.3%. CONCLUSION: Scientific and rational detection strategy can improve the detection rate of HNPCC. Based on traditional molecular genetics and combined with epigenetics, multiple detection methods can accurately diagnose HNPCC.
文摘Colorectal cancer (CRC) is caused by a series of genetic or epigenetic changes, and in the last decade there has been an increased awareness that there are multiple forms of colorectal cancer that develop through different pathways. Microsatellite instability is involved in the genesis of about 15% of sporadic colorectal cancers and most of hereditary nonpolyposis cancers. Tumors with a high frequency of microsatellite instability tend to be diploid, to possess a mucinous histology, and to have a surrounding lymphoid reaction. They are more prevalent in the proximal colon and have a fast pass from polyp to cancer. Nevertheless, they are associated with longer survival than stage-matched tumors with microsateUite stability. Resistance of colorectal cancers with a high frequency of microsatellite instability to 5-fluorouracilbased chemotherapy is well established. Silencing the MLH1 gene expression by its promoter methylation stops the formation of MLH1 protein, and prevents the normal activation of the DNA repair gene. This is an important cause for genomic instability and cell proliferation to the point of colorectal cancer formation. Better knowledge of this process will have a huge impact on colorectal cancer management, prevention, treatment and prognosis.
基金Supported by The Natural Science Fund of Educational Department of Anhui Province,No. 2006KJ094A
文摘AIM:To investigate the promoter methylation status and mRNA expression of DKK-3 and WIF-1 gene in hepatocellular carcinoma(HCC).METHODS:DKK-3 and WIF-1 acted as Wnt-antagonists and tumor suppressors,but hypermethylation of the gene promoter and low mRNA expression activated Wnt signaling aberrantly and induced the development of HCC.Methylation status of the DKK-3 and WIF-1 gene promoter was investigated using methylation specific polymerase chain reaction(PCR) in tumor and adjacent non-cancerous tissues from 33 HCC patients and 20 normal liver tissues served as control.The expression of DKK-3 and WIF-1 mRNA was also determined by real-time quantitative reverse transcriptase PCR.The relationship between methylation,mRNA expression,and clinical data,as well as methylation and mRNA expression of the two genes were analyzed.RESULTS:The methylation of DKK-3 and WIF-1 genes in HCC increased significantly compared with adjacent non-cancerous tissues and normal control tissues(χ2 =7.79,P < 0.05;χ2 = 4.89,P < 0.05),and no significant difference in methylation between adjacent non-cancerous tissues and normal control tissues was observed.In HCC tissues,significant differences in the DKK-3 promoter methylation were observed in age and cirrhosis,and significant differences of the WIF-1 promoter methylation were observed in HBsAg and cirrhosis.The average expression of DKK-3 mRNA in HCC and adjacent non-cancerous tissues was increased significantly compared with normal control tissues.The average expression of WIF-1 mRNA showed no significant difference among the three tissues.The mRNA expression of DKK-3 gene in HCC was decreased as the pathological grade increased.CONCLUSION:The aberrant promoter methylation and decreased expression of DKK-3 and WIF-1 may be an important mechanism in HCC,and may be a far-reaching significance in early diagnosis and therapy of HCC.
文摘AIM: To assess the predictive value of the insulinlike growth factor 2 (Igf2) methylation profile for the occurrence of Hepatocellular Carcinoma (HCC) in hepatitis C (HCV) cirrhosis. METHODS: Patients with: (1) biopsy-proven compensated HCV cirrhosis; (2) available baseline frozen liver sample; (3) absence of detectable HCC; (4) regular screening for HCC; (5) informed consent for genetic analysis were studied. After DNA extraction from liver samples and bisulfite treatment, unbiased PCR and DHPLC analysis were performed for methylation analysis at the Igf2 locus. The predictive value of the Igf2 methylation profile for HCC wasassessed by Kaplan-Meier and Cox methods. RESULTS: Among 94 included patients, 20 developed an HCC during follow-up (6.9 ± 3.2 years). The methylation profile was hypomethylated, intermediate and hypermethylated in 13, 64 and 17 cases, respectively. In univariate analysis, two baseline parameters were associated with the occurrence of HCC: age (P = 0.01) and prothrombin (P = 0.04). The test of linear tendency between the three ordered levels of Igf2 methylation and probability of HCC occurrence was significant (Log Rank, P = 0.043; Breslow, P = 0.037; Tarone-Ware, P = 0.039). CONCLUSION: These results suggest that hypomethylation at the Igf2 locus in the liver could be predictive for HCC occurrence in HCV cirrhosis.
文摘Wnt5a is a secreted Wnt ligand that plays a critical role in cellular pathways and inflammatory diseases.The WNT5A gene encodes two protein isoforms,Wnt5a-long and Wnt5a-short,which differ based on different promoter methylation and have distinct functions.However,the mechanisms of the promoter methylation are unclear.Depending on the extent of promoter methylation,Wnt5a exerts both anti-inflammatory and proinflammatory effects in inflammatory diseases,which may be involved in different Wnt5a isoforms.Therefore,the Wnt5a isoforms may be potential diagnostic markers for inflammatory diseases and the mechanisms of the WNT5A gene promoter methylation need to be further investigated.
基金grant from Scientific and Technologic Bureau of Wuxi, No. CS055010
文摘AIM: To investigate the feasibility of detecting methylated fecal DNA as a screening tool for colorectal carcinoma (CRC) and precancerous lesions. METHODS: Methylated secreted frizzled-related protein gene 2 (SFRP2), hyperplastic polyposis protein gene (HPP1) and O6-methylguanine-DNA methyltransferase gene (MGMT) in stools from 52 patients with CRC, 35 patients with benign colorectal diseases and 24 normal individuals were analyzed using methylation-specific PCR. RESULTS: Methylated SFRP2, HPP1 and MGMT were detected in 94.2%, 71.2%, 48.1% of CRC patients and 52.4%, 57.1%, 28.6% of adenoma patients, respectively. The overall prevalence of fecal DNA with at least one methylated gene was 96.2% and 81.8% in patients with CRC and precancerous lesions, respectively. In contrast, only one of the 24 normal individuals revealed methylated DNA. These results indicated a 93.7% sensitivity and a 77.1% specificity of the assay for detecting CRC and precancerous lesions. CONCLUSION: IVlethylation testing of fecal DNA using a panel of epigenetic markers may be a simple and promising non-invasive screening method for CRC and precancerous lesions.
基金Acknowledgments We thank the cell biology core facility for confocal study. The PHF8 antibody was kindly provided by Dr Jiemin Wong (East China Normal University). This work was supported by the National Basic Research Program of China (2007CB947900, 2010CB529705, 2007CB947100), the Chinese Academy of Sci- ences (KSCX2-YW-R-04, KSCX2-YW-R-I 11), the National Natural Science Foundation of China (30870538, 90919026), Postdoctoral fellowship (20090460670), and the Council of Shanghai Municipal Government for Science and Technology.
文摘Dimethylation of histone H3 lysine 9 (H3K9me2) is an important epigenetic mark associated with transcription repression. Here, we identified PHF8, a JmjC-domain-containing protein, as a histone demethylase specific for this repressing mark. Recombinant full-length wild type protein could remove methylation from H3K9me2, but mutation of a conserved histidine to alanine H247A abolished the demethylase activity. Overexpressed exogenous PHF8 was colocalized with B23 staining. Endogenous PHF8 was also colocalized with B23 and fibrillarin, two well-established nucleolus proteins, suggesting that PHF8 is localized in the nucleolus and may regulate rRNA transcription. Indeed, PHF8 bound to the promoter region of the rDNA gene. Knockdown of PHF8 reduced the expression of rRNA, and overexpression of the gene resulted in upregulation of rRNA transcript. Concomitantly, H3K9me2 level was elevated in the promoter region of the rDNA gene in PHF8 knockdown cells and reduced significantly when the wild type but not the catalytically inactive H247A mutant PHF8 was overexpressed. Thus, our study identified a histone demethylase for H3K9me2 that regulates rRNA transcription.
文摘Histone lysine methylation can be removed by JmjC domain-containing proteins in a sequence- and methylationstate-specific manner. However, how substrate specificity is determined and how the enzymes are regulated were largely unknown. We recently found that ceKDM7A, a PHD- and JmjC domain-containing protein, is a histone demethylase specific for H3K9me2 and H3K27me2, and the PHD finger binding to H3K4me3 guides the demethylation activity in vivo. To provide structural insight into the molecular mechanisms for the enzymatic activity and the function of the PHD finger, we solved six crystal structures of the enzyme in apo form and in complex with single or two peptides containing various combinations of H3K4me3, H3K9me2, and H3K27me2 modifications. The structures indicate that H3Kgme2 and H3K27me2 interact with ceKDMTA in a similar fashion, and that the peptide-binding specificity is determined by a network of specific interactions. The geometrical measurement of the structures also revealed that H3K4me3 associated with the PHD finger and H3K9me2 bound to the JmjC domain are from two separate molecules, suggesting a trans-histone peptide-binding mechanism. Thus, our systemic structural studies reveal not only the substrate recognition by the catalytic domain but also more importantly, the molecular mechanism of dual specifieity of ceDKM7A for both H3K9me2 and H3K27me2.
文摘Brain tumor-initiating cells (BTICs) have been enriched using antibodies against the cell surface protein CD133; however, the biological relevance and the regulatory mechanism of CD133 expression in human gliomas are not yet understood. In this study, we initially demonstrated that CD133 was overexpressed in high-grade human glioblastomas where CD133-positive cells were focally observed as a micro-cluster. In addition, CD133 transcripts with exon 1A, 1B, or 1C were predominantly expressed in glioblastomas. To elucidate the mechanism regulating this aberrant expression of CD133, three proximal promoters (P1, P2, and P3) containing a CpG island were isolated. In U251MG and T98G glioblastoma cells, the P1 region flanking exon 1A exhibited the highest activity among the three promoters, and this activity was significantly inactivated by in vitro methylation. After treatment with the demethylating agent 5-azacytidine and/or the histone deacetylase inhibitor valproic acid, the expression level of CD133 mRNA was significantly restored in glioma cells. Importantly, hypomethylation of CpG sites within the P1, P2, and P3 regions was observed by bisulfite sequencing in human glioblastoma tissues with abundant CD133 mRNA. Taken together, our results indicate that DNA hypomethylation is an important determinant of CD133 expression in glioblastomas, and this epigenetic event may be associated with the development of BTICs expressing CD133.
文摘Transformation of lignin into high-value chemicals is hampered by the complexity of monomers obtained from lignin depolymerization. Here we report a strategy, composed of hy-dro-demethoxylation and de-alkylation reactions, that is able to chemically converge various lig-nin-derived phenolic monomers into phenol in a single-step. Using 2-methoxy-4-propylphenol as a model compound, Pt/C exhibited the best performance in hydro-demethoxylation reaction afford-ing 80% 4-propylphenol from 2-methoxy-4-propylphenol, while H-ZSM-5 was identified as the most suitable catalyst for de-alkylation, achieving 83% yield of phenol from 4-propylphenol. Since the two catalysts operate under compatible conditions, combining the two catalysts to simultane-ously promote both hydro-demethoxylation and de-alkylation reactions was achieved. Configura-tion of how to organize the catalysts is a critical parameter, where the physical mixture of the two was most effective, providing over 60% phenol from 2-methoxy-4-propylphenol in a single-step.
文摘The alkylation of toluene with 1,3-pentadiene to produce pentyltoluene was carded out to obtain 2,6-dimethylnaphalene, which is an important intermediate during the production of 2,6-naphthalene dicarboxylic acid. Based on our previous work using anhydrous AlCl3 as catalyst, [bupy]BF4-AlCl3 ionic liquids were employed to catalyze the reaction of 1,3-pentadiene with toluene. The experimental results show that [bupy]BF4-AlCl3 ionic liquids are suitable for the reaction especially when the molar ratio of AlCl3 to [bupy]BF4 is 1.75 : 1, and the reaction could proceed at the temperature as low as 0℃. It could be as active as pure AlCl3, but much more environmentally friendly.
文摘Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a distinct role in these two different preparation procedures of the catalyst.Ball milling performed after the cesium modification has a strong influence on the Cs/X structure and acid-base properties,which results in the enhancement of the catalytic performance for side-chain methylation of toluene with methanol.Detailed studies revealed that ball milling intensified the interactions between oxides and molecular sieves,which not only increased the dispersion of the Cs species but also generated some weaker basic centers.It is proposed that the new basic centers could be Si-O-Cs and Al-O-Cs,which are produced by breaking of the Si-O-Al bonds of the zeolite framework under the synergetic effect of ball milling and alkali treatment.These new active sites may help to promote the side-chain methylation reaction.However,excessive ball milling will lead to the vanishing of zeolite micropores,thus deactivating side-chain methylation activity,which indicates that microporosity plays a key role in side-chain methylation and individual basic centers cannot catalyze this reaction.
基金Supported by the National Natural Science Foundation of China(21006024)the CNPC Innovation Foundation(2011D-5006-0507)+2 种基金the Shanghai Pujiang Program(11PJ1402600)the New Century Excellent Talents in University(NCET-11-0644)the Fundamental Research Funds for the Central Universities(WB1213004-1)
文摘Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- crystallization method is used to synthesize hierarchically porous zeolite ZSM-5 with varied Si/AI malar ratios. X-ray diffraction (XRD), N2 physisorption, NH3-temperature programmed desorption (TPD), scanning electronic microscopic (SEM) measurement and Fourier transform infrared (FT-IR) are employed to characterize the struc- ture and acidity of both hierarchically porous zeolites and their conventional counterparts. The method is found to be applicable to ZSM-5 with molar ratios of Si/A1 from 20 to 180. The ZSM-5 zeolites are used as catalysts for benzene methylation at 460 ℃ to investigate the effect of additional porosity and Si/A1 ratios. At low Si/AI ratios, the benzene conversions over conventional and hierarchical ZSM-5 are close, and selectivity to toluene is high over hierarchical ZSM-5. It is found that hierarchical porosity markedly enhances the utility of zeolite and the se- lectivity towards xylenes via improved mass transport at higher Si/Al ratios. Under an optimized hierarchical ZSM-5 catalvst, xvlene selectivity reaches 34.9% at a Si/AI ratio of 180.