The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transp...The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed.展开更多
An efficient organic photovoltaic (OPV) cell with an indium-tin-oxide/CuPc/C60/Ag structure has been investigated by changing the film thickness of organic layers. A high olin-circuit voltage (Yoc) of 0.5 V, a sho...An efficient organic photovoltaic (OPV) cell with an indium-tin-oxide/CuPc/C60/Ag structure has been investigated by changing the film thickness of organic layers. A high olin-circuit voltage (Yoc) of 0.5 V, a short-circuit current density (Jsc) of 5.81 mA/cm^2, and a high power conversion efficiency (ηp) of 1.2% were achieved at an optimum film thickness. The results demonstrate that material thickness is an important factor to cell optimization, especially for maximizing the absorption rate as will as reducing the cell resistance. Experimental results also indicate that the power conversion efficiency increases from 1.2% to 1.54% as a BCP exciton blocking layer of 10 nm is introduced.展开更多
Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructur...Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructure of the as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and atomic force microscope (AFM). Results revealed that the nanoflowers (2-4 μm) were assembled by the ultrathin SnO2 nanosheets (3.1 nm esti- mated by AFM). When tested as anode material for lithium ion batteries, the SnO2 nanoflowers showed improved cy- cling stability comparing with the commercial SnO2 parti- cles. The reversible charge capacity of SnO2 nanoflowers maintained 350.7 mAh/g after 30 cycles, while that of the commercial SnO2 was only 112.2 mAh/g. The high re- versible capacity and good cycling stability could be ascri- bed to the hierarchical nanostructure, atomic thickness nanosheets and large surface area of the SnO2 nanoflowers.展开更多
文摘The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed.
基金National Natural Science Foundation of China (No. 60425101)Young Talent Project of UESTC (060206)Program for New Century Excellent Talents in Uni-versity (No.NCET-06-0812)
文摘An efficient organic photovoltaic (OPV) cell with an indium-tin-oxide/CuPc/C60/Ag structure has been investigated by changing the film thickness of organic layers. A high olin-circuit voltage (Yoc) of 0.5 V, a short-circuit current density (Jsc) of 5.81 mA/cm^2, and a high power conversion efficiency (ηp) of 1.2% were achieved at an optimum film thickness. The results demonstrate that material thickness is an important factor to cell optimization, especially for maximizing the absorption rate as will as reducing the cell resistance. Experimental results also indicate that the power conversion efficiency increases from 1.2% to 1.54% as a BCP exciton blocking layer of 10 nm is introduced.
基金supported by the National Natural Science Foundation of China(21475085,21271125 and B010601)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,Program for Innovative Research Team in Science and Technology in University of Henan Province(2012TRTSTHN018)
文摘Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructure of the as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and atomic force microscope (AFM). Results revealed that the nanoflowers (2-4 μm) were assembled by the ultrathin SnO2 nanosheets (3.1 nm esti- mated by AFM). When tested as anode material for lithium ion batteries, the SnO2 nanoflowers showed improved cy- cling stability comparing with the commercial SnO2 parti- cles. The reversible charge capacity of SnO2 nanoflowers maintained 350.7 mAh/g after 30 cycles, while that of the commercial SnO2 was only 112.2 mAh/g. The high re- versible capacity and good cycling stability could be ascri- bed to the hierarchical nanostructure, atomic thickness nanosheets and large surface area of the SnO2 nanoflowers.