期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于子种群自适应思维进化-BP神经网络的锂离子电池SOC估计 被引量:4
1
作者 陈颖 黄凯 +1 位作者 丁恒 田海建 《电源学报》 CSCD 北大核心 2022年第4期92-101,共10页
荷电状态SOC(state of charge)是锂离子电池的重要参数之一,SOC的精准估计对电池组安全可靠运行具有重要意义。针对误差反向传播BP(back propagation)神经网络易收敛至局部最优,导致基于BP网络的SOC估计精度不高的问题,提出子种群自适... 荷电状态SOC(state of charge)是锂离子电池的重要参数之一,SOC的精准估计对电池组安全可靠运行具有重要意义。针对误差反向传播BP(back propagation)神经网络易收敛至局部最优,导致基于BP网络的SOC估计精度不高的问题,提出子种群自适应趋同策略改进思维进化算法,用其优化BP神经网络的初始权值及阈值,优化后的BP网络简称SAMEA-BP神经网络。结合充放电实验数据,将SAMEA-BP神经网络与标准BP神经网络、思维进化算法优化的BP(MEA-BP)神经网络用于锂离子电池的SOC估计,并对3种方法做了对比分析。结果表明:标准BP神经网络的预测误差保持在9%以内,MEA-BP及SAMEA-BP神经网络分别将误差降低至5%及3%以内,在不同工况下和不同温度下,SAMEA-BP有良好适应性,且估计精度高于BP和MEA-BP。 展开更多
关键词 锂离电池 荷电状态 BP神经网络 种群自适应趋同策略
下载PDF
基于子种群拉伸操作的精英共生生物搜索算法 被引量:5
2
作者 王艳娇 马壮 《控制与决策》 EI CSCD 北大核心 2019年第7期1355-1364,共10页
针对共生生物搜索算法存在易早熟、收敛速度慢等缺陷,提出一种基于子种群拉伸操作的精英共生生物搜索算法。在“互利共生”阶段,根据适应度值将种群划分为两个子种群,设计有针对性的进化策略,使两个子种群分别负责开发和探索,有效地平... 针对共生生物搜索算法存在易早熟、收敛速度慢等缺陷,提出一种基于子种群拉伸操作的精英共生生物搜索算法。在“互利共生”阶段,根据适应度值将种群划分为两个子种群,设计有针对性的进化策略,使两个子种群分别负责开发和探索,有效地平衡算法的收敛速度与精度;在“偏利共生”阶段,利用最优个体的方向性引导信息,引入拉伸因子和差分扰动向量,并修正个体更新模式,从而在提高算法收敛速度的同时保证种群的多样性;模拟寄生体和宿主的生物关系,提出精英"寄生"机制,进一步平衡算法在整个迭代过程中的探索与开发能力。对与标准共生生物算法、改进后的共生生物搜索算法以及其他4个群智能进化算法在17个函数上的测试结果进行比较分析,结果表明所提出的算法精度更佳,收敛速度优势明显。 展开更多
关键词 共生生物搜索 子种群策略 拉伸操作 精英机制 函数优化 自适应搜索
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部