在无约束条件下,人脸表情、姿态、光照以及背景等复杂因素可能导致人脸图像的类内变化大于类间变化.针对如何降低较大的类内变化对人脸验证研究的影响,本文结合加权子空间,提出了一种带先验相似性和先验距离约束的相似度度量学习方法.首...在无约束条件下,人脸表情、姿态、光照以及背景等复杂因素可能导致人脸图像的类内变化大于类间变化.针对如何降低较大的类内变化对人脸验证研究的影响,本文结合加权子空间,提出了一种带先验相似性和先验距离约束的相似度度量学习方法.首先,利用类内人脸对样本,学习带权重的类内协方差矩阵,通过加权子空间的投影,从人脸图像中获得鲁棒性的人脸特征表达;其次,利用样本对的相似性与差异性,建立了带先验相似性和先验距离约束的相似度度量学习模型,优化后的度量矩阵可以有效提高特征向量的类内鲁棒性和类间判别性;最后,利用优化的度量矩阵计算人脸对的相似度.在LFW(Labeled Faces in the Wild)数据集的实验验证了所提模型的有效性,与其它同类相似度度量学习方法相比,优化的度量矩阵更能准确地评估人脸间的相似性,并在受限训练集上取得了91.2%的识别率.展开更多
为研究低信噪比条件下阵列信号处理中的波达角(Direction of arrival,DOA)估计问题,分析了低信噪比条件下信号子空间和噪声子空间的特征值表现,探讨了随机观测对子空间特征值的影响。提出了在低信噪比条件下对接收信号先进行子空间分离...为研究低信噪比条件下阵列信号处理中的波达角(Direction of arrival,DOA)估计问题,分析了低信噪比条件下信号子空间和噪声子空间的特征值表现,探讨了随机观测对子空间特征值的影响。提出了在低信噪比条件下对接收信号先进行子空间分离,后进行随机观测的降维处理方法,并将稀疏贝叶斯学习应用到DOA中,降低了DOA估计的复杂度,同时保证估计的精度。仿真实验表明,本算法在低信噪比条件下性能良好,对非相干源和相干源均有良好的估计性能。展开更多
文摘在无约束条件下,人脸表情、姿态、光照以及背景等复杂因素可能导致人脸图像的类内变化大于类间变化.针对如何降低较大的类内变化对人脸验证研究的影响,本文结合加权子空间,提出了一种带先验相似性和先验距离约束的相似度度量学习方法.首先,利用类内人脸对样本,学习带权重的类内协方差矩阵,通过加权子空间的投影,从人脸图像中获得鲁棒性的人脸特征表达;其次,利用样本对的相似性与差异性,建立了带先验相似性和先验距离约束的相似度度量学习模型,优化后的度量矩阵可以有效提高特征向量的类内鲁棒性和类间判别性;最后,利用优化的度量矩阵计算人脸对的相似度.在LFW(Labeled Faces in the Wild)数据集的实验验证了所提模型的有效性,与其它同类相似度度量学习方法相比,优化的度量矩阵更能准确地评估人脸间的相似性,并在受限训练集上取得了91.2%的识别率.
文摘为研究低信噪比条件下阵列信号处理中的波达角(Direction of arrival,DOA)估计问题,分析了低信噪比条件下信号子空间和噪声子空间的特征值表现,探讨了随机观测对子空间特征值的影响。提出了在低信噪比条件下对接收信号先进行子空间分离,后进行随机观测的降维处理方法,并将稀疏贝叶斯学习应用到DOA中,降低了DOA估计的复杂度,同时保证估计的精度。仿真实验表明,本算法在低信噪比条件下性能良好,对非相干源和相干源均有良好的估计性能。