期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于谱结构融合的多视图聚类 被引量:3
1
作者 刘金花 王洋 钱宇华 《计算机研究与发展》 EI CSCD 北大核心 2022年第4期922-935,共14页
多视图聚类需要将多个视图的数据信息进行融合表示,是一项重要且具有挑战的任务.至今仍存在2个难解的问题:1)如何将多视图信息有效融合,减少信息丢失;2)如何将图学习和谱聚类同时进行,避免2步策略带来次优化结果.由于数据本身存在噪声... 多视图聚类需要将多个视图的数据信息进行融合表示,是一项重要且具有挑战的任务.至今仍存在2个难解的问题:1)如何将多视图信息有效融合,减少信息丢失;2)如何将图学习和谱聚类同时进行,避免2步策略带来次优化结果.由于数据本身存在噪声并且各视图数据差异较大,在数据空间进行融合可能会造成重要信息的损失;另外,考虑到不同视图的数据应具有相同的聚类结构.为此提出基于谱结构融合的多视图聚类模型,将各视图信息在谱嵌入阶段实施融合,一方面避免了噪声和各视图数据差异的影响,另一方面融合的部位和方式更自然,减少了融合阶段信息的丢失.另外,该模型利用子空间自表示进行图学习,有效地将图学习和谱聚类整合到统一框架中进行联合优化学习.在5个真实数据集上的实验表明了模型的有效性和优越性. 展开更多
关键词 多视图聚类 谱嵌入结构 信息融合 子空间自表示 联合优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部