This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combina...This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combination of the vector mechanics and numerical calculations. It models the analyzed domain composed of finite particles. Newton's second law is adopted to describe the motions of all particles. A convected material flame and explicit time integration for the solution procedure is also adopted in this method. By using the FPM, there is no need to solve any nonlinear equations, to calculate the stiffness matrix or equilibrium matrix, which is very helpful in the analysis of kinematically indeterminate structures. The basic formulations for the space bar are derived, following its solution procedures for bar assemblies. Three numerical examples are analyzed using the FPM. Results obtained from both the straight pretension cable and the suspension cable assembly show that the FPM can produce a more accurate analysis result. The motion simulation of the four-bar space assembly demonstrates the capability of this method in the analysis ofkinematically indeterminate structures.展开更多
基金supported by the National Natural Science Foundation of China (No. 50638050)the National High-Tech R&D (863) Program (No. 2007AA04Z441), China
文摘This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combination of the vector mechanics and numerical calculations. It models the analyzed domain composed of finite particles. Newton's second law is adopted to describe the motions of all particles. A convected material flame and explicit time integration for the solution procedure is also adopted in this method. By using the FPM, there is no need to solve any nonlinear equations, to calculate the stiffness matrix or equilibrium matrix, which is very helpful in the analysis of kinematically indeterminate structures. The basic formulations for the space bar are derived, following its solution procedures for bar assemblies. Three numerical examples are analyzed using the FPM. Results obtained from both the straight pretension cable and the suspension cable assembly show that the FPM can produce a more accurate analysis result. The motion simulation of the four-bar space assembly demonstrates the capability of this method in the analysis ofkinematically indeterminate structures.