期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种贝叶斯网络结构学习的混合随机抽样算法 被引量:6
1
作者 胡春玲 胡学钢 吕刚 《计算机工程》 CAS CSCD 2014年第5期238-242,共5页
贝叶斯网络结构学习的随机抽样算法存在收敛速度慢的问题,为此,结合均匀抽样和独立抽样,从初始样本、抽样方式和建议分布3个方面对抽样过程进行改进,提出一种混合型马尔可夫链蒙特卡罗抽样算法(HSMHS)。基于节点之间的互信息生成网络结... 贝叶斯网络结构学习的随机抽样算法存在收敛速度慢的问题,为此,结合均匀抽样和独立抽样,从初始样本、抽样方式和建议分布3个方面对抽样过程进行改进,提出一种混合型马尔可夫链蒙特卡罗抽样算法(HSMHS)。基于节点之间的互信息生成网络结构的初始样本,在迭代抽样阶段,按一定的概率随机选择均匀抽样和独立抽样,并根据当前抽样的样本总体计算独立抽样的建议分布,以改善抽样过程的融合性,加快收敛速度。对算法进行正确性分析,证明其抽样过程收敛于网络结构的后验概率分布,可保持较高的学习精度。在标准数据集上的实验结果表明,HSMHS算法的学习效率和精度均高于同类算法MHS、PopMCMC和Order-MCMC。 展开更多
关键词 贝叶斯网络 结构学习 随机抽样 混合抽样 子结构抽样 建议分布
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部