N.P.Mukherjee和 P.Bhattacharya在“On theta pairs for a maximal sub-group”(Proc.Amer.Math.Soc,Vl09N3(1990))一文中定义了有限群的极大子群的θ-子群偶概念,研究了极大子群的极大θ-子群偶对群结构的影响,得到了一系列结果.本文...N.P.Mukherjee和 P.Bhattacharya在“On theta pairs for a maximal sub-group”(Proc.Amer.Math.Soc,Vl09N3(1990))一文中定义了有限群的极大子群的θ-子群偶概念,研究了极大子群的极大θ-子群偶对群结构的影响,得到了一系列结果.本文在进一步探究θ-子群偶性质的基础上,对该文中一系列主要结果作出了本质性的改进,并给出了可解性、幂零性的一些新刻划.展开更多
Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the ...Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.展开更多
The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP&...The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.展开更多
文摘N.P.Mukherjee和 P.Bhattacharya在“On theta pairs for a maximal sub-group”(Proc.Amer.Math.Soc,Vl09N3(1990))一文中定义了有限群的极大子群的θ-子群偶概念,研究了极大子群的极大θ-子群偶对群结构的影响,得到了一系列结果.本文在进一步探究θ-子群偶性质的基础上,对该文中一系列主要结果作出了本质性的改进,并给出了可解性、幂零性的一些新刻划.
基金Specialized Research Fund for the Doctoral Program of Higher Education(No20060286006)the National Natural Science Foundation of China(No10871042)
文摘Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.
文摘The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.