We proposed an efficient scheme for constructing a quantum controlled phase-shift gate and generating thecluster states with rf superconducting quantum interference devices (SQUIDs)coupled to a microwave cavity throug...We proposed an efficient scheme for constructing a quantum controlled phase-shift gate and generating thecluster states with rf superconducting quantum interference devices (SQUIDs)coupled to a microwave cavity throughadiabatic evolution of dark eigenstates.During the operation,the spontaneous emission is suppressed since the rf SQUIDsare always in the three lowest flux states.Considering the influence from the cavity decay with achievable experimentalparameters,we numerically analyze the success probability and the fidelity for generating the two-SQUID maximallyentangled state and the controlled phase-shift gate by adiabatic passage.展开更多
By combining the B-spline basis set with model potential (B-spline + MP),we present oscillator strengthspectra of Rydberg Li atoms in external fields.The photoabsorption spectra are analyzed.Over the narrow energyrang...By combining the B-spline basis set with model potential (B-spline + MP),we present oscillator strengthspectra of Rydberg Li atoms in external fields.The photoabsorption spectra are analyzed.Over the narrow energyranges considered in this paper,the structure of the spectra can be independent of the initial state chosen for a givenatom.Our results are in good agreement with previous high-precision experimental data and theoretical calculations,where the R-matrix approach together with multichannel quantum defect theory (R-matrix+MQDT) was used.It issuggested that the present methods can be applied to deal with the oscillator strength spectra of Rydberg atoms incrossed electric and magnetic fields.展开更多
The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes ...The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.展开更多
By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come fr...By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come from the (n, 2n)2a reaction channel. The (n, 2n)2a reaction channel is achieved through six different reaction approach, which are illustrated in this paper. The calculated results agree very well with the measured data at En = 7.1, 8.09, 8.17, 9.09, 9.97 and 10.26 MeV, because the updated level schemes related to the n + ^9Be reactions have been employed in this calculations.展开更多
We investigate the effects of noisy quantum channels on the entanglement of cluster states and one way quantum computational gates.We take a basic model,the rotational gate about x axis based on the cluster state,in o...We investigate the effects of noisy quantum channels on the entanglement of cluster states and one way quantum computational gates.We take a basic model,the rotational gate about x axis based on the cluster state,in order to get the most essential effects of the paradigmatic noisy quantum channels.The entanglement of cluster states in the noisy channels and the fidelity between the rotated state without noisy channel and that with noisy channel are calculated.展开更多
The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the imp...The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.展开更多
Quantum computation requires coherently controlling the evolutions of qubits.Usually,these manipulations are implemented by precisely designing the durations(such as theπ-pulses)of the Rabi oscillations and tunable i...Quantum computation requires coherently controlling the evolutions of qubits.Usually,these manipulations are implemented by precisely designing the durations(such as theπ-pulses)of the Rabi oscillations and tunable interbit coupling.Relaxing this requirement,herein we show that the desired population transfers between the logic states can be deterministically realized(and thus quantum computation could be implemented)both adiabatically and non-adiabatically,by performing the duration-insensitive quantum manipulations.Our proposal is specifically demonstrated with the surface-state of electrons floating on the liquid helium,but could also be applied to the other artificially controllable systems for quantum computing.展开更多
Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distri...Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distribution maintained by pitch-angle scattering, the model calculates the electron flux by following bounce-averaged electric field, gradient, and curvature drift in the time dependent electric and magnetic field, meanwhile it counts the electron loss caused by pitch angle scattering. Using the model, the clectron flux distribution during a magnetic storm was calculated and compared with the observation data from the geosynchronous orbit. It is shown that the model can successfully reproduce most of the major electron flux enhancements observed at the geosynchronous orbit and generally tracks the satellite data well. The rms errors of the modeled logarithm of flux are between 0.5-1.0.展开更多
Stark-chirped rapid adiabatic passage(SCRAP) is an important technique used for coherent quantum controls. In this paper we investigate how the practically-existing dissipation of the system influences on the efficien...Stark-chirped rapid adiabatic passage(SCRAP) is an important technique used for coherent quantum controls. In this paper we investigate how the practically-existing dissipation of the system influences on the efficiency of the passage, and thus the fidelities of the SCRAP-based quantum gates. With flux-biased Josephson qubits as a specifical example, our results show clearly that the efficiency of the logic gates implemented by SCRAP are robust against the weak dissipation. The influence due to the non-adiabtic transitions between the adiabatic passages is comparatively significantly small. Therefore, the SCRAP-based logic gates should be feasible for the realistic physical systems with noises.展开更多
文摘We proposed an efficient scheme for constructing a quantum controlled phase-shift gate and generating thecluster states with rf superconducting quantum interference devices (SQUIDs)coupled to a microwave cavity throughadiabatic evolution of dark eigenstates.During the operation,the spontaneous emission is suppressed since the rf SQUIDsare always in the three lowest flux states.Considering the influence from the cavity decay with achievable experimentalparameters,we numerically analyze the success probability and the fidelity for generating the two-SQUID maximallyentangled state and the controlled phase-shift gate by adiabatic passage.
基金Supported by the National Natural Science Foundation of China under Grant No.10674154Doctoral Foundation of Taiyuan University of Science and Technology
文摘By combining the B-spline basis set with model potential (B-spline + MP),we present oscillator strengthspectra of Rydberg Li atoms in external fields.The photoabsorption spectra are analyzed.Over the narrow energyranges considered in this paper,the structure of the spectra can be independent of the initial state chosen for a givenatom.Our results are in good agreement with previous high-precision experimental data and theoretical calculations,where the R-matrix approach together with multichannel quantum defect theory (R-matrix+MQDT) was used.It issuggested that the present methods can be applied to deal with the oscillator strength spectra of Rydberg atoms incrossed electric and magnetic fields.
基金supported by the National High Technology Research and Development Program of China under Grant No. 2011AA010803
文摘The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.
基金Supported by the National Natural Science Foundation of China under Grant No.10547005
文摘By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come from the (n, 2n)2a reaction channel. The (n, 2n)2a reaction channel is achieved through six different reaction approach, which are illustrated in this paper. The calculated results agree very well with the measured data at En = 7.1, 8.09, 8.17, 9.09, 9.97 and 10.26 MeV, because the updated level schemes related to the n + ^9Be reactions have been employed in this calculations.
基金supported by the National Natural Science Foundation of China (Grant No.11175105)the National Research Foundation&Ministry of Education,Singapore
文摘We investigate the effects of noisy quantum channels on the entanglement of cluster states and one way quantum computational gates.We take a basic model,the rotational gate about x axis based on the cluster state,in order to get the most essential effects of the paradigmatic noisy quantum channels.The entanglement of cluster states in the noisy channels and the fidelity between the rotated state without noisy channel and that with noisy channel are calculated.
基金supported by the AG Turbo with funds of the Federal Ministry of Eco- nomics and Technology BMWi (FKZ 0327715G)
文摘The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.
基金supported by the National Natural Science Foundation of China(Grant Nos.90921010 and 11174373)the National FundamentalResearch Program of China(Grant No.2010CB-923104)+1 种基金the National Research Foundation and Ministry of Education,Singapore(Grant No.WBS:R-710-000-008-271)the 2013 Doctoral Innovation funds of Southwes tJiaotong University and the Fundamental Research Funds for the Central Universities
文摘Quantum computation requires coherently controlling the evolutions of qubits.Usually,these manipulations are implemented by precisely designing the durations(such as theπ-pulses)of the Rabi oscillations and tunable interbit coupling.Relaxing this requirement,herein we show that the desired population transfers between the logic states can be deterministically realized(and thus quantum computation could be implemented)both adiabatically and non-adiabatically,by performing the duration-insensitive quantum manipulations.Our proposal is specifically demonstrated with the surface-state of electrons floating on the liquid helium,but could also be applied to the other artificially controllable systems for quantum computing.
基金supported by the National Natural Science Foundation of China(Grant No.40704032)
文摘Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distribution maintained by pitch-angle scattering, the model calculates the electron flux by following bounce-averaged electric field, gradient, and curvature drift in the time dependent electric and magnetic field, meanwhile it counts the electron loss caused by pitch angle scattering. Using the model, the clectron flux distribution during a magnetic storm was calculated and compared with the observation data from the geosynchronous orbit. It is shown that the model can successfully reproduce most of the major electron flux enhancements observed at the geosynchronous orbit and generally tracks the satellite data well. The rms errors of the modeled logarithm of flux are between 0.5-1.0.
基金Supported by the National Science Foundation under Grant Nos.90921010,11174373the National Fundamental Research Program of China under Grant No.2010CB923104+2 种基金National Research Foundation and Ministry of Education,Singapore under Grant No.WBS:R-710-000-008-271the 2013 Doctoral Innovation funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities
文摘Stark-chirped rapid adiabatic passage(SCRAP) is an important technique used for coherent quantum controls. In this paper we investigate how the practically-existing dissipation of the system influences on the efficiency of the passage, and thus the fidelities of the SCRAP-based quantum gates. With flux-biased Josephson qubits as a specifical example, our results show clearly that the efficiency of the logic gates implemented by SCRAP are robust against the weak dissipation. The influence due to the non-adiabtic transitions between the adiabatic passages is comparatively significantly small. Therefore, the SCRAP-based logic gates should be feasible for the realistic physical systems with noises.