The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-fre...The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.展开更多
Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localizati...Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.展开更多
The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extrac...The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extraction method based on the energy ratio before and after the wavelet attenuation, named the energy-ratio method(ERM). The proposed method uses multipoint signal data in the time domain to estimate the wavelet energy without invoking the source wavelet spectrum, which is necessary in conventional Q extraction methods, and is applicable to any source wavelet spectrum; however, it requires high-precision seismic data. Forward zero-offset VSP modeling suggests that the ERM can be used for reliable Q inversion after nonintrinsic attenuation(geometric dispersion, refl ection, and transmission loss) compensation. The application to real zero-offset VSP data shows that the Q values extracted by the ERM and spectral ratio methods are identical, which proves the reliability of the new method.展开更多
Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders t...Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.展开更多
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ...There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.展开更多
The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth...The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.展开更多
The model test of seismic simulation shaking table is an important method to study the seismic design of bridge structure. In order to evaluate the seismic response and dynamic characteristics of pile-water-pier syste...The model test of seismic simulation shaking table is an important method to study the seismic design of bridge structure. In order to evaluate the seismic response and dynamic characteristics of pile-water-pier system for developing more reliable design procedures, shaking table model tests of a submerged bridge pier system, including pile groups-cap-pier and inertia mass, were conducted. Since different similitude laws corresponding to different test objectives affected the validity of test results, the similitude law with the aim to consider the effect of hydrodynamic pressure was proposed and confirmed through an actual example. Based on the test results, the effect of water around model on seismic response under seismic excitation input was analyzed and the failure level was judged by observing the variation of basic frequency. The test results indicate that the transfer function of analytical model with water is different from that without water, the natural frequency without water is always higher than that with water, and the first modal shapes are various. It is also concluded that the similitude law is suitable for practical application and the dynamic characteristics and seismic response of the structure system can be changed because of the existence of the surrounding water, which should be paid much attention in the further investigation.展开更多
Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-or...Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-order spectra is an important new method. However, the higher-order spectra often have phase wrapping problems, which lead to wavelet phase spectrum deviations and thereby affect mixed-phase wavelet estimation. To solve this problem, we propose a new phase spectral method based on conformal mapping in the bispectral domain. The method avoids the phase wrapping problems by narrowing the scope of the Fourier phase spectrum to eliminate the bispectral phase wrapping influence in the original phase spectral estimation. The method constitutes least-squares wavelet phase spectrum estimation based on conformal mapping which is applied to mixed-phase wavelet estimation with the least-squares wavelet amplitude spectrum estimation. Theoretical model and actual seismic data verify the validity of this method. We also extend the idea of conformal mapping in the bispectral wavelet phase spectrum estimation to trispectral wavelet phase spectrum estimation.展开更多
Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are...Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.展开更多
The variability characteristics of Guangdong daily power load from 2002 to 2004 and its connection to meteorological variables are analyzed with wavelet analysis and correlation analysis. Prediction equations are esta...The variability characteristics of Guangdong daily power load from 2002 to 2004 and its connection to meteorological variables are analyzed with wavelet analysis and correlation analysis. Prediction equations are established using optimization subset regression. The results show that a linear increasing trend is very significant and seasonal change is obvious. The power load exhibits significant quasi-weekly (5 – 7 days) oscillation, quasi-by-weekly (10 – 20 days) oscillation and intraseasonal (30 – 60 days) oscillation. These oscillations are caused by atmospheric low frequency oscillation and public holidays. The variation of Guangdong daily power load is obviously in decrease on Sundays, shaping like a funnel during Chinese New Year in particular. The minimum is found at the first and second day and the power load gradually increases to normal level after the third day during the long vacation of Labor Day and National Day. Guangdong power load is the most sensitive to temperature, which is the main affecting factor, as in other areas in China. The power load also has relationship with other meteorological elements to some extent during different seasons. The maximum of power load in summer, minimum during Chinese New Year and variation during Labor Day and National Day are well fitted and predicted using the equation established by optimization subset regression and accounting for the effect of workdays and holidays.展开更多
In this paper, a new method of earthquakes prediction taking into account the influence of strain solitary waves as a "trigger" of some shocks is presented. Methods of forecasting are based on evaluating trajectorie...In this paper, a new method of earthquakes prediction taking into account the influence of strain solitary waves as a "trigger" of some shocks is presented. Methods of forecasting are based on evaluating trajectories of individual solitons and clarification of shocks probability. Solitary waves are considered in solid anisotropic elastic medium and proved that there exist the motion equations solutions in the form of solitary waves. Predicting the trajectories of solitary waves related to the moment problem for the special case of Chebyshev system of functions or exponential problem. This problem is solved using special bijective mapping. Seismic process in the region of Japanese Islands, March 11,2011 is analyzed as an example.展开更多
Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based...Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.展开更多
In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of...In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.展开更多
The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the s...The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.展开更多
Nuclear engineering belongs to significant project;there is higher requirement on sitings.The study has discussed basic factors of selecting sites,anti-seismic research on sitings including the seismic ground motion,p...Nuclear engineering belongs to significant project;there is higher requirement on sitings.The study has discussed basic factors of selecting sites,anti-seismic research on sitings including the seismic ground motion,probability methods of seismic hazard analysis as well as interaction about structure and foundation,meanwhile provide the reason for nuclear engineering selecting sites.展开更多
Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are...Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are various kinds of knowledge representation methods in ESEP3.0. In this paper, the authors introduce the knowledge representation methods, such as structure knowledge, seismological and precursory forecast knowledge, machine learning knowledge, synthetic prediction knowledge, knowledge to validate and verify certainty factors of anomalous evidence and support knowledge, etc. and propose a model for validation of certainty factors of anomalous evidence. The knowledge representation methods represent all kinds of earthquake prediction knowledge well.展开更多
By shallow seismic prospecting, the Cenozoic Group in the sea area near the Yangtze River Mouth can be divided into five seismic sequences. They correspond to the Quaternary, Pliocene, Upper Miocene, Lower Miocene and...By shallow seismic prospecting, the Cenozoic Group in the sea area near the Yangtze River Mouth can be divided into five seismic sequences. They correspond to the Quaternary, Pliocene, Upper Miocene, Lower Miocene and Eocene respectively. The Quaternary System covers all the detecting area. The Tertiary System overlaps and thins out from NE to SW. The sedimentary basement mainly consists of volcanic rock (J 3) and acidic rock (r 3 5). Paleogene or Late Cretaceous basins are not found there. The faults that have been detected are all normal faults. They can be divided into three groups (NE, NW, near EW) by their trend. The NE and NW trending faults are predominant, and agree with aeromagnetic anomaly. Their length and displacement are larger than that of the EW trending faults. The activity of the NE trending faults is different in different segments. The SW segment is a Quaternary fault, the middle segment is a Neogene fault, The NE is Paleogene. But the segment of the NW trending fault is not obvious. The average vertical displacement rate is about 0 015mm/a.展开更多
Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mo...Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.展开更多
基金supported by the National Science and Technology Major Project(No.2011ZX05051)Science and Technology Project of Shengli Oilfi eld(No.YKW1301)
文摘The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.
基金National Natural Science Foundation of China(No.61227003)National Program on Key Basic Research Program(973Program)(No.2013CB311804)
文摘Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.
基金supported by the Major Project of the Ministry of Science and Technology of China(No.2011ZX05024-001-01)National Nature Science Foundation of China(No.41140033)
文摘The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extraction method based on the energy ratio before and after the wavelet attenuation, named the energy-ratio method(ERM). The proposed method uses multipoint signal data in the time domain to estimate the wavelet energy without invoking the source wavelet spectrum, which is necessary in conventional Q extraction methods, and is applicable to any source wavelet spectrum; however, it requires high-precision seismic data. Forward zero-offset VSP modeling suggests that the ERM can be used for reliable Q inversion after nonintrinsic attenuation(geometric dispersion, refl ection, and transmission loss) compensation. The application to real zero-offset VSP data shows that the Q values extracted by the ERM and spectral ratio methods are identical, which proves the reliability of the new method.
基金supported by National 863 Program of China(Grant No.2006AA09A101-0102)
文摘Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.
文摘There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.
基金supported by the National Natural Science Foundation of China(No.41574130,41874143 and 41374134)the National Science and Technology Major Project of China(No.2016ZX05014-001-009)the Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2016TD0023)
文摘The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.
基金National Basic Research Program of China ("973" Program,No.2011CB013605-4)National Natural Science Foundation of China(No.51178079)Major Program of National Natural Science Foundation of China (No.90915011)
文摘The model test of seismic simulation shaking table is an important method to study the seismic design of bridge structure. In order to evaluate the seismic response and dynamic characteristics of pile-water-pier system for developing more reliable design procedures, shaking table model tests of a submerged bridge pier system, including pile groups-cap-pier and inertia mass, were conducted. Since different similitude laws corresponding to different test objectives affected the validity of test results, the similitude law with the aim to consider the effect of hydrodynamic pressure was proposed and confirmed through an actual example. Based on the test results, the effect of water around model on seismic response under seismic excitation input was analyzed and the failure level was judged by observing the variation of basic frequency. The test results indicate that the transfer function of analytical model with water is different from that without water, the natural frequency without water is always higher than that with water, and the first modal shapes are various. It is also concluded that the similitude law is suitable for practical application and the dynamic characteristics and seismic response of the structure system can be changed because of the existence of the surrounding water, which should be paid much attention in the further investigation.
基金supported by National 973 Program (No. 2007CB209600)
文摘Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-order spectra is an important new method. However, the higher-order spectra often have phase wrapping problems, which lead to wavelet phase spectrum deviations and thereby affect mixed-phase wavelet estimation. To solve this problem, we propose a new phase spectral method based on conformal mapping in the bispectral domain. The method avoids the phase wrapping problems by narrowing the scope of the Fourier phase spectrum to eliminate the bispectral phase wrapping influence in the original phase spectral estimation. The method constitutes least-squares wavelet phase spectrum estimation based on conformal mapping which is applied to mixed-phase wavelet estimation with the least-squares wavelet amplitude spectrum estimation. Theoretical model and actual seismic data verify the validity of this method. We also extend the idea of conformal mapping in the bispectral wavelet phase spectrum estimation to trispectral wavelet phase spectrum estimation.
基金supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ034)the National Natural Science Foundation of China(No.41676039)the National Science and Technology Major Project(2017ZX05049002-005)。
文摘Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.
基金Platform for Meteorological Prediction of Power Load in Guangdong Province
文摘The variability characteristics of Guangdong daily power load from 2002 to 2004 and its connection to meteorological variables are analyzed with wavelet analysis and correlation analysis. Prediction equations are established using optimization subset regression. The results show that a linear increasing trend is very significant and seasonal change is obvious. The power load exhibits significant quasi-weekly (5 – 7 days) oscillation, quasi-by-weekly (10 – 20 days) oscillation and intraseasonal (30 – 60 days) oscillation. These oscillations are caused by atmospheric low frequency oscillation and public holidays. The variation of Guangdong daily power load is obviously in decrease on Sundays, shaping like a funnel during Chinese New Year in particular. The minimum is found at the first and second day and the power load gradually increases to normal level after the third day during the long vacation of Labor Day and National Day. Guangdong power load is the most sensitive to temperature, which is the main affecting factor, as in other areas in China. The power load also has relationship with other meteorological elements to some extent during different seasons. The maximum of power load in summer, minimum during Chinese New Year and variation during Labor Day and National Day are well fitted and predicted using the equation established by optimization subset regression and accounting for the effect of workdays and holidays.
文摘In this paper, a new method of earthquakes prediction taking into account the influence of strain solitary waves as a "trigger" of some shocks is presented. Methods of forecasting are based on evaluating trajectories of individual solitons and clarification of shocks probability. Solitary waves are considered in solid anisotropic elastic medium and proved that there exist the motion equations solutions in the form of solitary waves. Predicting the trajectories of solitary waves related to the moment problem for the special case of Chebyshev system of functions or exponential problem. This problem is solved using special bijective mapping. Seismic process in the region of Japanese Islands, March 11,2011 is analyzed as an example.
基金The project supported by the Natural Science Foundation of Inner Mongolia under Grant No. 200408020113 and National Natural Science Foundation of China under Grant No. 40564001
文摘Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.
基金Projects(51804113,52074116)supported by the National Natural Science Foundation of ChinaProject(2020M682563)supported by the China Postdoctoral Science Foundation+1 种基金Project(19C0743)supported by the Scientific Research Foundation of Hunan Provincial Education Department,ChinaProject(E52076)supported by the Science Foundation of Hunan University of Science and Technology,China。
文摘In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.
基金sponsored by the Natural Science Foundation of Shandong Province (Y2007E09)Joint Earthquake Science Foundation (C08028)Special Application Research of Digital Seismic Wave Data ,Shangdong,China
文摘The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.
文摘Nuclear engineering belongs to significant project;there is higher requirement on sitings.The study has discussed basic factors of selecting sites,anti-seismic research on sitings including the seismic ground motion,probability methods of seismic hazard analysis as well as interaction about structure and foundation,meanwhile provide the reason for nuclear engineering selecting sites.
文摘Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are various kinds of knowledge representation methods in ESEP3.0. In this paper, the authors introduce the knowledge representation methods, such as structure knowledge, seismological and precursory forecast knowledge, machine learning knowledge, synthetic prediction knowledge, knowledge to validate and verify certainty factors of anomalous evidence and support knowledge, etc. and propose a model for validation of certainty factors of anomalous evidence. The knowledge representation methods represent all kinds of earthquake prediction knowledge well.
文摘By shallow seismic prospecting, the Cenozoic Group in the sea area near the Yangtze River Mouth can be divided into five seismic sequences. They correspond to the Quaternary, Pliocene, Upper Miocene, Lower Miocene and Eocene respectively. The Quaternary System covers all the detecting area. The Tertiary System overlaps and thins out from NE to SW. The sedimentary basement mainly consists of volcanic rock (J 3) and acidic rock (r 3 5). Paleogene or Late Cretaceous basins are not found there. The faults that have been detected are all normal faults. They can be divided into three groups (NE, NW, near EW) by their trend. The NE and NW trending faults are predominant, and agree with aeromagnetic anomaly. Their length and displacement are larger than that of the EW trending faults. The activity of the NE trending faults is different in different segments. The SW segment is a Quaternary fault, the middle segment is a Neogene fault, The NE is Paleogene. But the segment of the NW trending fault is not obvious. The average vertical displacement rate is about 0 015mm/a.
基金Supported by the Hong Kong Research Grant Council (No.CERG 621S05)
文摘Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.