Analyses of the effects of some parameters were performed to determine the admittance functions in a common two-compartment building with background porosity by the imposed excitation method.Variations of the magnific...Analyses of the effects of some parameters were performed to determine the admittance functions in a common two-compartment building with background porosity by the imposed excitation method.Variations of the magnification factors of fluctuating internal pressures were analyzed using 96 model cases under random fluctuating external pressure,and then corresponding design equations were fitted.The results show that the Helmholtz resonance peaks of the admittance functions in both compartments increase with increasing the area of windward or partition wall opening.With increasing the volume of the compartment with an external opening,the resonance peak in this compartment at the higher Helmholtz frequency significantly decreases,at the same time,the resonance peak in the other compartment at the lower Helmholtz frequency also decreases.With increasing the volume of the compartment with background porosity,both resonance peaks in this compartment at the lower and higher Helmholtz frequencies decrease,meanwhile,the resonance peak at the lower Helmholtz frequency for the other compartment also decreases,whereas the resonance peak at the higher Helmholtz frequency increases.Both resonance peaks of the admittance functions in the two compartments decrease with increasing the amplitude of fluctuating external pressure coefficients or reference wind speed.展开更多
The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated base...The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.展开更多
基金Projects(51278367,50878159)supported by the National Natural Science Foundation of ChinaProject(90715040)supported by the Major Research Program of National Natural Science Foundation of China
文摘Analyses of the effects of some parameters were performed to determine the admittance functions in a common two-compartment building with background porosity by the imposed excitation method.Variations of the magnification factors of fluctuating internal pressures were analyzed using 96 model cases under random fluctuating external pressure,and then corresponding design equations were fitted.The results show that the Helmholtz resonance peaks of the admittance functions in both compartments increase with increasing the area of windward or partition wall opening.With increasing the volume of the compartment with an external opening,the resonance peak in this compartment at the higher Helmholtz frequency significantly decreases,at the same time,the resonance peak in the other compartment at the lower Helmholtz frequency also decreases.With increasing the volume of the compartment with background porosity,both resonance peaks in this compartment at the lower and higher Helmholtz frequencies decrease,meanwhile,the resonance peak at the lower Helmholtz frequency for the other compartment also decreases,whereas the resonance peak at the higher Helmholtz frequency increases.Both resonance peaks of the admittance functions in the two compartments decrease with increasing the amplitude of fluctuating external pressure coefficients or reference wind speed.
基金supported by National Natural Science Foundation of China(Grant Nos.41102093&41072153)CBM Union Foundation of Shanxi Province (Grant No.2012012002)Doctoral Scientific Foundation of Henan Polytechnic University(Grant No.648706)
文摘The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.